3 YAPISAL TASARIMI ETKİLEYEN FİZİKSEL SORUNLAR Yapısal tasarım kavramıyla, bir yapının mimari tasarım dışında kalan ve bina, mekan ve konstrüktif, yapı fiziksel, elemanı düzeyinde kimyasal ve tasarımını teknolojik etkileyen parametrelerin strüktürel, tümü kastedil- mektedir. Bu bağlamda, yapı ve yapı elemanları ele alındığında bu parametrelerin her birisinin bu elemanları etkilediği açıktır. Dolayısıyla, yapıyı ve yapı elemanlarını tasarlarken bu elemanlarda oluşan ısıl sorunların, su ve sesle ilgili, yangınla ilgili sorunların mutlaka ele alınması ve yapı elemanının bu sorunların üstesinden gelebilecek şekilde tasarlanmış olması kaçınılmaz bir zo runluluktur. Bu bölümde, yukarıda açıklanan gerekçelere bağlı olarak, yapıyı oluşturan değişik yapı elemanlarında, sözkonusu edilen sorunlar ayrıntıla-rıyla ele alınacak ve konu yapı elemanını etkileyen özellikleriyle incelenecektir. 3.1. YAPI ELEMANlNDA ISIL SORUNLAR Mimarlığın türlü temel konfor elemanı koşullarına olan sahip mekanın olması, insan mimarın yaşamının yerine gerektirdiği getirmeye her çahşacağı birincil işlevlerden birisidir. Isıl sorunların öncelikli önemi, doğal çevreyle mimarın oluşturacağı yapma çevre (mekan) arasında ayırıcı bir yapı elemanının varlığım gerektirir. Mekan dışında kalan doğal atmosfer, mevsim, gece-gündüz, coğrafi enlem, yön ve benzeri parametrelere bağlı olarak ısıl yönden sürekli değişik bir karakter gösterir. Böyle bir değişkenlik içerisinde insanın kendisini dış etkilerden koruyabilmesi, sağlıklı bir şekilde yaşayabilmesi için gerekli kon- for koşullari en iyi düzeyde sağlanmalıdır. Bu gereklilik mekan elemanları ve ilave enerjiyle sağlanır. Yaz-kış ve gece-gündüz arasındaki ısıl farklılıklar mimarın oluşturacağı mekanın tasarlanmasında veri oluşturan tasarım para- metrelerinden birisidir. Soğuk dönemde mekanı sıcak tutmak, sıcak dönemde de mekanı serin tutabilmek için gerekli enerjiyi minimum düzeyde tutabilecek uygun tasarlanmış elemanlara ve malzemelere gereksinme vardır. Ancak, iki mekan arasında bir sıcaklık farkı oluştuğunda da aradaki ayırıcı elemanda önemli ısıl sorunların ortaya çıkacağı bilinmelidir İnsanların yaşadığı mekanlarda ısı akımlarıyla birlikte onun ayrılmaz bir olan parçası buhar akımları ve birlikte bunların oluşturacağı sorunlar da gündeme gelir. Bu bölümde, ısı ve su buharıyla ilgili sorunlara yeterli düzeyde değinilecek ve konu örneklerle irdelenecektir. 3.1.1. ISI VE SICAKLIK İLİŞKİSİ Sıcaklık, bir cisimdeki moleküler hareketin artmasıyla yükselen skaler bir büyüklüktür. Bir cismi oluşturan atomlar ya da moleküller, ortam sıcaklığının artışına bağlı olarak titreşimlerini artırır ya da ortam sıcaklığının azalışına bağlı olarak titreşimlerini azaltır. Başka bir deyişle, bu titreşimin artması fizikselolarak cismin nıma göre, sıcaklığının artması şeklinde kendini gösterir. Bu ta- cisimlerde sıcaklık yükseldikçe atomların tftreşimlerinin genlikle- ri artacağından boyda uzarna, hacimde büyüme gibi fiziksel sonuçlar ortaya çıkar. Cismin iç yapısında ise, bağ kuvvetleri arasında çözülmeler oluşur ve cisim fizikselolarak katı halden sıvı hale, sıvı halden de gaz haline geçebilir. Cismin sıcaklığının azalmasıyla bu olay tersine dönebilir. Bundan yararlanılarak sıcaklığın derecelendirilmesi ve ölçülmesi yöntemleri geliştirilmiştir. Sıcaklık bir enerji seviyesi olarak kabul edilir ve "C, OK gibi sıcaklık birimleriyle ifade edilir. Doğada elde edilebilecek en düşük sıcaklık derecesi Helyum gazının katılaşma sıcaklığı olan -273°C, Kelvin tarafından mutlak sıfır diye adlandırılmış ve OK sıcaklığının başlangıç noktası olarak alınmıştır. Buna benzer şekilde, 760 mm Hg basıncı altında saf suyun buz halinden sıvı hale geçmesi noktasındaki sıcaklık Celsius tarafından OaC, yine aynı koşullarda suyun sıvı halinden gaz haline geçmesindeki sıcaklık da 100°C olarak kabul edilmiştir. Bu iki değerin arası 100 eşit aralığa bölünerek her birisi ı'c olarak alınmıştır. Buna göre, mutlak sıfır olarak kabul edilen Kelvin sıcaklığının başlangıcı -273'C ye karşılık gelmektedir. Başka bir deyişle, suyun kaynama sıcaklığı 373°K olarak ifade edilebilir. Sıcaklığın OK veya "C ile ölçülmesine karşılık, ısı bir enerji türü olduğu için büyüklüğü Joule, Kalori gibi enerji birimleriyle ifade edilir. Bu nedenle -yüksek sıcaklıktaki enerji seviyesinden düşük sıcaklıktaki. enerji seviyesine doğru bir akım oluşur ve buna ısı akımı denir. 3.1.2.ISI AKIMLARI Isı enerjisinin sıcaklıkları farklı' iki ortam arasında birinden diğerine geçişi aşağıda belirtilen üç şekilde oluşur; Isı iletimi (kondüksiyon), Isı taşınımı (konveksiyon, Isıışınımı (radyasyon). 3.1.2.1. ISI İLETİMİ (KONDÜKSİYON) Isı iletimi katı cisimlerde ısı enerjisinin geçiş şeklidir. Enerji, cismi oluşturan moleküllerintitreşimi sonucu bir molekülden diğerine aktarılarak yayılır. Bütün katı cisimlerde ısı enerjisinin geçişi bu şekilde olur. Molekülleri sıkı paketlenmiş cisimlerde bu etkileşim daha kolay gerçekleşeceği için ısı enerjisinin geçişi daha kolayolur. Metaller gibi serbest elektron içeren cisimlerde özellikle serbest elektronlar ısı iletimine önemli ölçüde yardımcı olurlar. Mikro yapıdaki bu özelliğe karşılık cismin makro yapısındaki gözeneklilik; boşluk içerme gibi düzensiz bünye yapısına ilişkin özellikler ısı iletimi açısından olumsuz bir ortam oluşturur ve cisim ısıyı daha az iletir hale gelir. İleride açıklanacağı gibi, gözenekli, boşluklu veya serbest elektron içermeyen metal dışındaki cisimlerde bu özellik, ısı yalıtkanlığının makro düzeydeki karakteristik bir ifadesidir. İşte bu nedenlerle, bir katı cisim yukarıda açıklanan biçimde bir yapı gösterdiği takdirde bu cismin ısı iletkenlik özelli ği azalır. 3.1.2.2. ISI TAŞINIMI (KONVEKSİYON) Isı enerjisinin sıvı ve gaz gibi akışkanlardaki geçiş şekli ısı taşınımı diye adlandırılır. Sıcak bir katı cisme temas eden sıvı ya da gaz bir ortam gözönüne alındığında, sıcaklığı yüksek katı cisimle temas eden gaz veya sıvı moleküllerinin ısıl titreşimleri bu yüzeyden enerji alarak artacaktır.Bunun sonucunda katı cisme temas eden moleküllerin kapladıkları hacim büyüye ceğinden ve ortama göre daha hafif olacaklarından yükselecekler v~ böylece onların yerine geçen benzer moleküller de yüzeyden enerji alarak taşınım hareketini başlatacak ve devam ettireceklerdir. Bu olay sonucunda, yüksek seviyeden düşük seviyeye enerji taşınacağından yüksek enerji seviyeli cismin enerjisi azalacak ve soğuyacaktır. Örneğin bu olay, kış mevsiminde bir hacmin penceresi önündeki havanın bu mekanizmayla soğuyarak aşağı inmesi biçiminde kendini gösterir. Yabancı dilde 'convection' adı verilen bu olayı önleyerek ısı kaybını en aza indirmek amacıyla, özellikle pencerelerde çift cam kullanılmaktadır 3.1.2.3.ISI IŞINIMI (RADYASYON) Bütün katı ve sıvı cisimler sürekli olarak yüzeylerinden ısı ışınımlan yayarlar, buna ışınım denir. Bu yayınım cismin yüzey sıcaklığına ve yüzey özel- liklerine bağlıdır. Çevredeki nesnelerden tümüyle bağımsızdır ve bu ısı ışınımının taşınabilmesi için herhangi bir taşıyıcı ortama gerek yoktur. Öyle ki, boşlukta bile yayılabilir.Bilindiği gibi, dünyaya 150 milyon km uzaklıkta bulunan Güneş'ten yayılan ısı ışınımı (radyasyon) Dünya ile Güneş arasında herhaı;ıgi bir ortam olmaksızın Dünya'ya ulaşıp onu ısıtabilmektedir, Bunun gibi sıcaklığı yüksek cisimlerden daha düşük sıcaklıktaki cisimlere doğru bir ısı ışınımı oluşur. Diğer bir deyişle, bütün cisimler ışınım yoluyla ısı enerjisi yayarlar. Buna ilişkin olarak ısı enerjisinin ışınlanmasına bağlı genel bir ku- ral koymak olanaksızdır. Bazen ele alınan cismin karakteristik özelliklerin- den bağımsız birtakım tanımlar yapılabilir. Bunlardan birisi de siyah cisim kavramıdır. Bu kavrama göre siyah cisim kendisine gelen görünür ya da görünmez bütün ışınlan emer. Ancak, bu anlamda gerçek bir cisim mevcut 01-mamakla birlikte teorik hesaplar yönünden bu tür bir kavramsal cismin varlığı ortaya konmuştur.Siyah boyalı bir cisim aynı koşullar altında beyaz boyalı bir cisimle yanyana konulduğunda (güneş altında) siyah cisim tüm renk ve ısı ışınımla- rım emdiği için sıcaklığı beyaza göre daha da yükselecektir. Siyah bir cisim tarafından birim alanda ve zamanda uzaya Boltzmann yasasına göre, cismin mutlak yayılan toplam enerji Stephansıcaklığının dördüncü kuvvetiyle orantılı olarak ifade edilebilir: Burada E ışınlama ya da yayınlamada açığa çıkan enerji, o ise StephanBoltzmann sabitidir 3.1.3.Yapı Elemanında Isı Akımı, Sıcaklık Gradyanı, Hesap Ve Çizimi Yapı elemanlarında ısı akımına ilişkin olayları daha kolay. kavrayabilmek açısından sabit ısı rejimlerinde (stasyoner); Yapı elemanının iki yüzeyinin sıcaklığının değişınediği ve aradaki sıcaklık farkının sabit kaldığı, Yapı elemanını oluşturan malzemenin homojen ve izotrop olduğu varsayıldığında, böyle bir yapı elemanının birim alanından, birim zamanda geçen ısı eneıjisi miktarı Fourier yasasına göre şöyledir: Bu bağıntıda, λ: Yapı elemanını oluşturan cisme. ait ısı iletkenlik katsayısı d: Yapı elemanının kalınlığı t 1 : Yapı elemanının bir yüzünün sıcaklık derecesi t2: Yapı elemanının diğer yüzünün sıcaklık derecesi' dir ancak burada tı > t2 olarak alınmıştır. Bağıntıdaki Q’nun işareti, ısı enerjisinin yüksek düzeyden düşük düzeye doğru akması nedeniyle (-) olması gerekirken pratik düşüncelerle ve kolaylık sağlamak amacıyla burada gözönüne alınmamaktadır. Bu açıklamalar bağlamında (A) ısı iletkenlik katsayısı; 1 m kalınlığındaki bir cismin paralel iki yüzü arasında 1°C lik sıcaklık farkı olduğunda, 1 mZ alanından birim zamanda geçen ısı enerjisi miktarıdır. Buna göre kullanılan zaman, alan ve eneıji kavramlarının birimleri gözönüne alındığında A'nın birimi Joule/m sn'iC olur. Burada Joule/sn, Watt olduğu için güç birimi olarak yerine konduğunda A, W/moC olur. Eskiden birim olarak kullanılan kcal/mh'tC değerleri yeni birime çevrilmek istendiğinde kcal/mhC olarak verilen değer 1.16 dönüşüm katsayısıyla çarpılmalıdır. (Bazı literatürde "C yerine OK konarak A'nın birimi W/moK olarak verilmektedir. Ancak hesaplar sıcaklık farkları esas alınarak yapıldığından birimin içinde "C veya OK bulunmasının bir önemi yoktur.) Yapı elemanının birden fazla katmandan oluşması halinde, her katmanın ısı iletkenlik katsayıları toplanıp yukarıdaki formüle göre hesap yapılamayacağından, onun yerine yapı elemanını oluşturan her bir katmanın kalınlığının ısı iletkenlik katsayısına bölümü olan (d /A), yani her bir katmanın direnç değerleri toplanarak yapı elemanının toplam ısıl direnci bulunabilir. Buna göre bağıntı; şeklini alır. Bu bağıntıdaki A, yapı elemanının ısı geçirgenliğidir. 1/ A ise yapı elemanının ısı geçirgenlik direncidir. Böylece Fourier bağıntısı; ya da , şekline gelir. Tek veya çok katmarılı bir yapı elemanı her iki yüzünden havayla temas halinde olduğu için, burada katı cisimden havaya ya da havadan katı cisme bir ısı taşınımı (konveksiyon) sözkonusudur. Bu durumda, iki ortam arasındaki bu türden bir ısı geçişini hesaplayabilmek için yüzeysel ısı iletim katsayısı (a) kavramı kullanılır (a aynı zamanda yüzey film katsayısı konveksiyon katsayısı diye de adlandırılır). Isı taşınımı yoluyla olan ısı akımı, bu durumda; ya da olur. Burada, Q: Birim alandan birim zamanda geçen ısı akımı miktarı, a: Yüzeyselısı iletim katsayısı! (yVlm20 C) , to: Ortam sıcaklığı (oC), ty: Yapı elemanının yüzey sıcaklığı (oC) olup, a, yüzeyin pürüzlülüğüne, elemanı çevreleyen hava hareketinin hızına, yüzeyin yatay veya düşeyoluşuna, her durumda dış ya da iç yüzeyoluşuna, kısaca yapı elemanının konumuna bağlı olarak değişir. Tablo 3.1. a ve 1/a değerleri tablosu. (TS825)