Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Testler Yrd.Doç.Dr. Emre YALAMAÇ İÇERİK o Giriş oVaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler • P-değerleri: • II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi • Örnekleme Büyüklüğü Formülleri • İşlem Karakteristik Eğrilerini Kullanma (Operating Characteristic Curves) • Büyük Örnekleme Testi oVaryansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler • Bir t-Test için P-değeri • II. Çeşit Hata ve Örnekleme Büyüklüğü oBir Normal Dağılım Varyansı ve Standart Sapması İçin Hipotez Testler Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler Varyansı bilinen, bir tekli normal kitlenin ortalaması () için hipotez testler incelenecek. X1,X2,...Xn kitleden alınan rasgele bir örnekleme ve xb örnekleme ortalaması ’nun 2/n varyans ile yansız nokta tahmincisi olsun. Ortalama için hipotez testler: 0 belirli bir sabit Şayet sıfır hipotezi doğru ise, xb ortalama 0 ve standart sapma /√n ile normal bir dağılımdır. Hesaplanmış örnekleme ortalaması için bir kritik bölge belirleyebiliriz. Örnekleme ortalamasını standardize etmek uygundur. Yani H0: =0 için test prosedürü, test istatistiği kullanır. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler Şayet sıfır hipotezi H0: =0 doğru ise, E(xb )=0 ve Z0 dağılımı standart normal dağılımlıdır ve N(1,0) ile ifade edilir. Sonuç olarak, şayet H0: =0 doğru ise, 1- olasılığı test istatistiği Z0 –z/2 ile z/2 arasına düşer. Burada z/2 100/2 standart normal dağılımın yüzde noktasıdır. Örneklemenin ürettiği test istatistiği değeri, Z0 dağılımının kuyruklarına düşmesi şayet H0: =0 doğru ise doğal değildir. Bu H0’nun yanlış olduğunu işaret eder. Şayet gözlene değer z0: H0 reddedilir. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler Şayet gözlene değer z0: ise: H0 reddedilemez. I. çeşit hata olasılığı bu test prosedürü için ’dır. Test istatistiği xb yerine Z0 olduğunda kritik bölge ve test prosedürünü anlamak daha kolaydır. Fakat aynı kritik bölge örnekeleme ortalaması xb içinde yazılabilinir. Şayet ya da H0: =0 reddedilir. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler ÖRNEK: Fırlatma koltuğu örneğinde şartnamede fırlatma hızı ortalamasının 50 cm/s olması gereklidir. Kitle standart sapması =2 cm/s bilinmektedir. Uzman bir I. çeşit hata olasılığı ya da =0,05 önem seviyesini tanımlamak istiyor. Yaptığı 25 deney sonucunda xb =51,3 cm/s ise; Buradan elde edilecek sonuçlar nelerdir? Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler 1. İlgilenilen parametre fırlatma hızı 2. H0 : =50 cm/s 3. H1 : ≠ 50 cm/s = 0,05 5. Test istatistiği 6. Şayet z0 > 1,96 ya da z0< -1,96 ise H0 reddedilir. Bu değerler 4. adımda tanımlanan önem seviyesi 0,05’den bulunur z0,025=1,96 ve –z0,025=-1,96 7. xb =51,3 cm/s ve =2 cm/s için hesaplama 8. Sonuç: z0=3,25 > 1,96 dolayısyla 0,05 önem seviyesinde H0 : =50 reddedilir. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler Hipotez testi tek taraflı da kurabilinir Burada Z0 negatif değer için H0 reddedilmeyecektir. Sadece üst kuyuk kritik bölgedir ve hesaplanan z0 değeri çok büyükse Test istatistiği hesaplandığında şayet Z0 çok küçük ise H0 reddedilir. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: : Standart normal kümülatif fonksiyon Yani, H0 : =50 sıfır hipotezi ’nın P-değeri (0,0012)’den büyük her değeri için reddedilecektir. Örneğin =0,01 için reddedilir. Fakat, =0,001 için reddedilmez. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Hipotez testlerinde araştırmacı direk olarak I. çeşit hata olasılığını seçer. Fakat II. çeşit hatanın olasılığı örnekleme büyüklüğünün seçimine bağlıdır. Burada II. çeşit hatanın olasılığının nasıl hesaplandığını ve belirli bir değeri için örnekleme büyüklüğünün nasıl seçildiği incelenecektir. Çift taraflı hipotezi ele alalım: Sıfır hipotezinin yanlış olduğunu ve gerçek ortalama değerin =0+ varsayalım >0 Test istatistiği Z0 : Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Test istatistiği Z0 dağılımı sıfır hipotezi ve alternatif hipotez için şekilde gösterilmektedir. Şekile göre şayet H1 doğru ise, bir II. çeşit hata olasılığı sadece şayet Z0 ~N(√n/,1) iken arasında ise yapılır. Yani II. çeşit hata olasılığı, H1 doğru olarak verildiğinde Z0’ın –z/2 ve z/2 arasına düşme olasılığıdır. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Varyans bilindiğinde, ortalama için çift taraflı bir test uygulandığında II. çeşit bir hata olasılığı Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler Örnekleme Büyüklüğü Formülleri: Verilen bir ve değerleri için pratik uygun bir değeri elde etmede, uygun büyüklükte örnekleme boyutu tanımlanabilir. Çift taraflı alternatif hipotez için: Ya da şayet >0 ise Çünkü >0 ise z standart normal dağılımın 100 üst yüzdesi ise Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler Örnekleme Büyüklüğü Formülleri: Ya da varyans bilindiğinde, ortalama için çift taraflı bir test uygulandığında örnekleme büyüklüğü: Şayet n bir tam sayı değil ise bir üst tam sayıya yuvarlanır. Bu da ile karşılaştırıldığında küçük iken iyi bir yaklaşmadır. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler Örnekleme Büyüklüğü Formülleri: Fırlatma koltuğu hızının gerçek değeri 49 cm/s olduğunu varsayalım. =0,05, =2 cm/s ve n=25 ise çift taraflı test için değeri nedir? = (-0,54) – (-4,46)=0,295 Bu olasılık yaklaşık 0,3’tür ve bu fark 50 cm/s’den ayırt edilemez. Yani gerçek fırlatma hızı 49 cm/s olduğunda 50 cm/s’lik sıfır hipotez testi reddedilmez. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler Örnekleme Büyüklüğü Formülleri: Araştırmacı gerçek değerden 1 cm/s farkı tahmin edecek bir test tasarlamaktadır. Yani H0 : =50 cm/s sıfır hipotezi yüksek olasılıkla örneğin 0,90 reddedilecek =0,05 =2 ve =0,1 ise çift taraflı test için n değeri nedir? Burada yaklaşım iyidir çünkü : ’ya göre küçüktür. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler İşlem Karakteristik Eğrilerini Kullanma (Operating Characteristic Curves) Örnekleme büyüklüğü ve II. çeşit hata hesaplamalarında bazen işlem karakteristik(OC) eğrileri kullanmak daha uygundur. Apendiks VIIa ve VIIb. Bu eğriler II. çeşit bir hata olasılığı denklemine göre değişik örnekleme büyüklüklerine göre bir d parametresine karşılık çizimleridir. Eğriler =0,05 ve =0,01 için çizilmişlerdir. d parametresi aşağıdaki formül ile tanımlanır: Böylece bir işlem karakteristik eğrileri problemdeki 0 ve değerlerinden bağımsız olarak kullanılabilinirler. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler İşlem Karakteristik Eğrilerini Kullanma Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler İşlem Karakteristik Eğrilerini Kullanma Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler İşlem Karakteristik Eğrilerini Kullanma (Operating Characteristic Curves) Genel olarak işlem karakteristik eğrileri 3 parametre , d ve n ile ilgilidir. Her hangi ikisinin verildiği durumda 3. parametre hesaplanabilinir. Bu eğrilerin iki çeşit uygulaması vardır. 1. Verilen bir n ve d değerinde değerini bulma; Bu çeşit problemler yapılan deneylerin hassasiyet analizlerinde ya da örnekleme büyüklüğü ekonomik ya da diğer nedenlerle kısıtlandığında kullanılır. 2. Verilen bir ve d değeri için, n bulmada kullanılır. Bu çeşit problemler genelde araştırmacı örnekleme büyüklüğünü seçebilme olanağı olduğunda karşılaşılır. Apendiks VIIc ve VIId çizelgeleri işlem karakteristik eğrileri tek taraflı alternatif testler içindir. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler İşlem Karakteristik Eğrilerini Kullanma Fırlatma koltuğu hızında gerçek değer 51 cm/s olduğunu varsayalım. =0,05 =2 ve n=25 ise çift taraflı test için değeri nedir? Apendiks VIIa’dan d=0,5 ve n=25 için =0,3 değeri okunur. Bu da yaklaşık bir %30 şansla gerçek değerin 51 cm/s olduğu tespit edilemez. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler İşlem Karakteristik Eğrilerini Kullanma Araştırmacı gerçek değerden 1 cm/s farkı tahmin edecek bir test tasarlamaktadır. Yani H0 : =50 cm/s sıfır hipotezi yüksek olasılıkla örneğin 0,90 reddedilecek =0,05 =2 ve =0,1 ise çift taraflı test için n değeri nedir? Apendiks VIIa’dan d=0,5 ve =0,1 için bir n değeri okunur. Bu da yaklaşık n=40 değeridir ve hesaplanan n=42 değerine oldukça yakındır. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Ortalaması İçin Hipotez Testler Büyük Örnekleme Testi Sıfır hipotezi için test prosedürünü geliştirirken kitlenin normal dağıldığını varsaydık ve 2 biliniyordu. Fakat bir çok durumda 2 bilinmeyecektir ve kitle normal dağılım olarak modelleyemeyebiliriz. Bu durumlarda şayet n (n>40) büyük ise, örneklemenin standart sapması(s) kitlenin standart sapması() yerine konulabilinir. Z X 0 s/ n Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler Buradaki durum ortalama için bir güvenlik aralığı bulmadaki durumla benzerlik gösterir. Burada da aynı kabullenmeyle kitle dağılımının normal dağılım gösterdiği varsayılır ve şayet X1,X2,...Xn bir rasgele örnekleme ise rasgele değişken n-1 serbestlik derecesiyle t-dağılımına sahiptir. Hipotez testi ele alındığında: Test istatistiği olarak kullanılır. Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler Şayet sıfır hipotezi doğru ise, T0 n-1 serbestlik derecesiyle bir t-dağılımlıdır. H0 doğru olduğu zaman, test istatistiğinin dağılımını bildiğimizde, istenilen seviyede I. çeşit hatanın olasılığını kontrol için kritik bölgeyi işaretleyebiliriz. Bunun için t yüzde noktaları –t/2, n-1 ve t/2,n-1 kritik bölge için sınırlar olurlar ve böylece Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler ÖRNEK: Üretilen golf sopalarının esneklik katsayılarının =0,05 seviyesinde 0,82 değerini geçtiği araştırılıyor. Üretimden rasgele seçilen 15 golf sopasının ölçülen katsayıları aşağıdadır. Rasgele seçilen verilerin olasılık grafiği, normal dağılım testi: Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler CEVAP: 1. İlgilenilen parametre esneklik katsayısı 2. H0 : =82 3. H1 : > 82 = 0,05 5. Test istatistiği 6. Şayet t0 > t0,05 ,14=1,761 ise H0 reddedilir. 7. xb =0,83725 ve s=0,02456, 0=0,82 ve n=15 için hesaplama 8. Sonuç: t0=2,75 > 1,761 dolayısıyla 0,05 önem seviyesinde H0 : =0,82 reddedilir. Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler Bir t-Test için P-değeri Sıfır hipotezini reddetmek için en küçük önem seviyesi Bu da t0 test istatistiği için kuyrukların altında kalan alandır. t dağılımı için sadece 10 kritik değer Apendikste verilmiştir. Dolayısıyla tam P-değerini burdan okumak imkansızdır. Fakat P-değerinin üst ve alt sınırları buradan belirlenbilir. Bir önceki 14 serbestlik derecesi için apendiksten baktığımızda Kritik değer Kuyruk alanı t0=2,72 bu değer 0,01 ve 0,005 arasındadır dolayısıyla bu değerler P-değerinin alt ve üst sınırları olurlar. Şayet P-değeri sınırlarını iki kuyruk için değerlendirirsek alt ve üst sınır değerlerinin iki katı alınması gerekir. 2,624 < t0 < 2,972 0,01=2(0,005) < P-değeri < 0,02=2(0,01) Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler II. Çeşit Hata ve Örnekleme Büyüklüğü II. çeşit hatanın olasılığı, varyansı bilinmeyen bir normal dağılım ortalaması için yapılan testlerde test istatistiği dağılımına bağlıdır. Gerçek ortalama değer =0+ olduğunda T0 dağılımına n-1 serbestlik derecesiyle merkezi olmayan t dağılımı denir ve n/ merkezi olmayan parametresi ile şayet =0 ise merkezli t dağılımı denir II. Çeşit hata iki taraflı alternatif test T0’ merkezi olmayan t rasgele değişkenidir. II. çeşit hata () olasılığını t-test için bulmak merkezi olmayan t-dağılımında 2 nokta arasındaki olasılığı bulmaktır. Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler II. Çeşit Hata ve Örnekleme Büyüklüğü II. çeşit hata olasılığı tablolar sayesinde kolayca bulunur. Apendiks VII e, VIIf, VIIg, ve VIIh çizelgeleri çeşitli örnekleme büyüklükleri için bir d parametresine karşılık t-test için grafikleridir. Tek taraflı alternatif testler de >0 ya da <0 VIIg ve VIIh çizelgeleri kullanılır. d bilinmeyen 2 parametresine bağlıdır. Bu zorluktan kurtulmak için bazı durumlarda daha önceden yapılan deneylerin bilgisinden yararlanılarak kabaca 2 tahmin edilir. Şayet test performansını değerlendirilmek istiyorsak veriler toplandıktan sonra örnekleme varyansı s2, 2 tahmini için kullanılabilinir. Şayet daha önceden toplanmış bir veri yoksa, o zaman incelenecek ortalama farkını büyüklüğü dikkate alınır. Şayet ortalamadaki küçük bir farkı bulmak istiyorsak d=/<=1 değeri kullanılır. Öte yandan daha ciddi büyük bir farkı bulmak istiyorsak d=/=2 kullanırız. Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler II. Çeşit Hata ve Örnekleme Büyüklüğü Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler II. Çeşit Hata ve Örnekleme Büyüklüğü Golf sopaları esneklik katsayısı deneyinde şayet gerçek ortalama değer 0,82 değerini geçiyorsa ve biz 0,02 farkla sıfır hipotezini H0 :=0,82 en az 0,8 olasılıkla reddetmek istiyorsak yapılan n=15 deney yeterli midir? Hesaplanan s=0,02456 ’yı tahmin etmekte kullanılır. > 0,8 Hassasiyet için n=15 örnekleme yeterlidir. Yrd.Doç.Dr. Emre YALAMAÇ Varyansı Bilinmeyen Bir Normal Dağılım Ortalaması İçin Hipotez Testler II. Çeşit Hata ve Örnekleme Büyüklüğü Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Varyansı ve Standart Sapması İçin Hipotez Testler Bazen kitlenin varyansı ve standart sapması için hipotez testler gerekir. Bir normal kitlenin varyansının (2) belirli bir değere örneğin 20 eşit olduğunu ya da standart sapmasının () belirli bir değere 0 eşit olduğunu test etmek istiyoruz. Test istatistiği Şayet sıfır hipotezi H0 :2=20 doğru ise, yukarıda tanımlanan test istatistiği X20 n-1 serbestlik derecesi ile ki-kare dağılımını izler. x20 hesaplanır ve H0 :2=20 sıfır hipotezi Şayet ya da REDDEDİLİR. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Varyansı ve Standart Sapması İçin Hipotez Testler Aynı istatistiği tek taraflı alternatif hipotezler içinde kullanılır. ya da REDDEDİLİR. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Varyansı ve Standart Sapması İçin Hipotez Testler ÖRNEK: Şişeleri sıvı deterjan ile dolduran bir makina için rasgele seçilen 20 şişe örneklemesine göre örnek varyansı s2=0,0153 oz2 çıkmıştır. Şayet dolu hacim varyansı 0,01 oz2’yi geçerse kabul edilemez miktar şişe az ya da çok dolu olarak doldurulacaktır. Şişe doldurma hacminin normal dağılımlı olduğunu varsayarsak. =0,05 seviyesinde, şişe sayısı varyans farkının aşılıp problemle karşılaşılmasını belirleyebilmek için yeterli midir? Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Varyansı ve Standart Sapması İçin Hipotez Testler 1. İlgilenilen parametre kitle varyansı 2. H0 : =0,01 3. H1 : > 0,01 = 0,05 5. Test istatistiği 6. Şayet x02 > x0,052 ,19=30,14 ise H0 reddedilir. 7. Hesaplama 8. Sonuç: H0 : =0,01 dolayısıyla 0,05 önem seviyesinde reddetmek için güçlü bir kanıt yoktur. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Varyansı ve Standart Sapması İçin Hipotez Testler II. Çeşit Hata ve Örnekleme Büyüklüğünün Seçimi Ki-kare testler için işlem karakteristik eğrileri apendiks VIIi ile VIIn arasındaki çizelgelerde =0,05 ve =0,01 için verilir. Cift taraflı alternatif hipotezlerde VIIi ve VIIj çizelgelerinde grafiği bir apsis parametresine karşılık bir çok değişik n örnekleme büyüklüğüne göre çizilir. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Varyansı ve Standart Sapması İçin Hipotez Testler II. Çeşit Hata ve Örnekleme Büyüklüğünün Seçimi Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Varyansı ve Standart Sapması İçin Hipotez Testler II. Çeşit Hata ve Örnekleme Büyüklüğünün Seçimi ÖRNEK: Şişeleri dolum örneğini ele aldığımızda, şayet dolu hacim varyansı 0,01 oz2’yi geçerse kabul edilemez miktar şişe az ya da çok dolu olarak doldurulacaktır. Yani hipotez testinin standart sapması 0=0,1, gerçek standart sapmanın bu değeri %25 aştığını varsayarsak bunu en az 0,8 olasılıkla bulmak istiyorsak, bunun için n=20 örnekleme büyülüğü yeterli midir? %40 şansla sıfır hipotezi reddedilir şayet gerçek standart sapma 0,125 oz2 gibi büyük bir değer ise. B hata değerini küçültmek için örnekleme büyüklüğünü arttırmalıyız. Örneğin =0,125 için =0,2 değerini ancak n=75 örnekleme ile elde edebiliriz. Yrd.Doç.Dr. Emre YALAMAÇ Bir Normal Dağılım Varyansı ve Standart Sapması İçin Hipotez Testler II. Çeşit Hata ve Örnekleme Büyüklüğünün Seçimi