Uploaded by alicanakar99

diferansiyel-denklemler-ders-notlari-zekeriya-girgin

advertisement
DİFERANSİYEL DENKLEMLER
Ders Notları
EKİM 10, 2013
PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ
BÖLÜMÜ
Denizli
0
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Önsöz
Bu diferansiyel denklemler notları Pamukkale Üniversitesi, Mühendislik Fakültesi, Makine
Mühendisliği Bölümü öğrencilerinin eline Türkçe çözümlü bir kaynak vermek amacıyla
hazırlandı. Verilen misaller mümkün olduğunca kolaydan zora doğru sıralandı.
Çözümlerde analitik yöntemler kullanıldı. Dolayısıyla, Diferansiyel denklemlerin sayısal
çözümleri yer almamaktadır. Sadece “Euler Metodu” bir problem çözümünü göstermek
için verildi. Diğer metotlar “Sayısal Analiz” dersi kapsamında olduğu için burada yer
almamaktadır.
Türkçe bilen tüm öğrencinin derste vaktini yazmakla geçirmek yerine, dersi takip etmekle
geçirmesi öğrenci açısından daha yararlı olacağı düşünüldüğünden, bu notlar web
sayfasında verilmiştir.
Bu Ders Notları son haliyle değildir. Yapılan değişiklikler web sayfasında tekrar
yayınlanacaktır. Çözümlerde çıkan hatalar veya önerilerinizi email adresime gönderirseniz
memnun olurum. Çünkü sizin önerilerinizle notların daha yararlı hale geleceği
kanaatindeyim.
Ekim, 2013
Doç.Dr. Zekeriya GİRGİN
Pamukkale Üniversitesi
Mühendislik Fakültesi
Makine Mühendisliği Bölümü
Kınıklı Kampüsü 20070
Denizli, Türkiye
Web page:
Email: [email protected]
http://zgirgin.pau.edu.tr/
“Ahirette seni kurtaracak bir eserin olmadığı takdirde, fâni
dünyada bıraktığın şeylere de kıymet verme!”
İçindekiler
Önsöz ................................................................................................................. 1
1. Diferansiyel Denklemlere Giriş ........................................................................... 6
1.1
Diferansiyel Denklemin Tanımı ..................................................................... 6
1.2 Genel Çözümden Diferansiyel Denklemin Hesaplanması: ................................. 7
2. Ayrılabilir Diferansiyel denklemler ve uygulamaları (Separable Differential Equations
and their applications) ........................................................................................... 9
1
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Tanımlama: ......................................................................................................... 9
2.1
Misal:...................................................................................................... 10
2.2
Misal:...................................................................................................... 10
2.3
Misal:...................................................................................................... 10
2.4
Misal:...................................................................................................... 10
2.5
Misal:...................................................................................................... 11
2.6
Misal:...................................................................................................... 11
2.7
Misal:...................................................................................................... 12
2.8
Misal:...................................................................................................... 12
2.9
Misal:...................................................................................................... 12
3. Birinci Mertebeden Homojen Diferansiyel Denklemler ve uygulamaları (First-order
homogeneous Differential Equations and their applications) ..................................... 13
3.1
Misal:...................................................................................................... 13
3.2
Misal:...................................................................................................... 14
3.3
Misal:...................................................................................................... 14
3.4
Misal:...................................................................................................... 15
4. Birinci Mertebeden Değişkenlerine Ayrılabilen veya Homojen Hale İndirgenebilen
Diferansiyel Denklemler (First Order Differential Equations which can be separable or
converted into homogenous) ................................................................................ 15
4.1
Misal:...................................................................................................... 16
4.2
Misal:...................................................................................................... 17
4.3
Misal:...................................................................................................... 17
4.4
Misal:...................................................................................................... 18
4.5
Misal:...................................................................................................... 19
4.6
Misal:...................................................................................................... 20
5. Birinci Mertebeden Lineer Diferansiyel Denklemler ve uygulamaları (First-order Linear
Differential Equations and their applications) .......................................................... 22
5.1
Misal:...................................................................................................... 24
5.2
Misal:...................................................................................................... 24
5.3
Misal:...................................................................................................... 25
5.4
Misal:...................................................................................................... 25
2
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
5.5
Misal:...................................................................................................... 26
6. Bernoulli Denklemi ......................................................................................... 26
6.1
Misal:...................................................................................................... 27
6.2
Misal:...................................................................................................... 27
6.3
Misal:...................................................................................................... 28
6.4
Misal:...................................................................................................... 28
6.5
Misal:...................................................................................................... 29
6.6
Misal:...................................................................................................... 29
6.7
Misal:...................................................................................................... 30
7. Riccati Diferansiyel Denklemi .......................................................................... 30
7.1
Misal:...................................................................................................... 31
7.2
Misal:...................................................................................................... 32
7.3
Misal:...................................................................................................... 33
7.4
Misal:...................................................................................................... 34
8. Clairaut Diferansiyel Denklemi ......................................................................... 35
8.1
Misal:...................................................................................................... 35
8.2
Misal:...................................................................................................... 36
9. Tam Diferansiyel Denklemler (Exact Differential Equations) ................................ 36
9.1
Misal:...................................................................................................... 37
9.2
Misal:...................................................................................................... 38
9.3
Misal:...................................................................................................... 39
9.4
Misal:...................................................................................................... 41
9.5
Misal:...................................................................................................... 41
9.6
Misal:...................................................................................................... 42
10.
İntegrasyon Çarpanı ile Tam Diferansiyel Hale Getirilebilen Denklemler ........... 42
10.1
    x  integrasyon çarpanı sadece x e bağımlı olduğu durum: .................. 43
10.1.1
Misal: .............................................................................................. 43
10.1.2
Misal: .............................................................................................. 45
10.1.3
Misal: .............................................................................................. 46
3
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
10.1.4
Misal: .............................................................................................. 47
10.1.5
Misal: .............................................................................................. 48
10.2
    y  integrasyon çarpanı sadece y ye bağımlı olduğu durum: ................. 48
10.2.1
Misal: .............................................................................................. 49
Eğer M ve N aynı dereceden homojen fonksiyonlar ve x  M  y  N  0 ise,
1
integrasyon çarpanı  
şeklindedir. ............................................................. 49
xy
10.3
10.3.1
Misal: .............................................................................................. 50
10.3.2
Misal: .............................................................................................. 50
10.3.3
Misal: .............................................................................................. 51
Eğer M ve N aynı dereceden homojen fonksiyonlar ve x  M  y  N  0 ise,
1
integrasyon çarpanı  
şeklindedir. .................................................... 52
xM  yN
10.4
10.4.1
10.5
Misal: .............................................................................................. 53
M  x, y   dx  N  x, y   dy  0
diferansiyel
M  x, y   y  f1  x, y 
denklemi
ve
N  x, y   x  f 2  x, y  şeklinde ifade edilebiliyor ve f1  x, y   f 2  x, y  ise, integrasyon çarpanı

1
şeklindedir. ................................................................................. 53
xM  yN
10.5.1
10.6
Misal: .............................................................................................. 53
M  x, y   dx  N  x, y   dy  0 diferansiyel
 M N 
 y  x   N  a  x   M  b  y 


şeklinde
ifade
denkleminde
edilebiliyor
ise,
 M N 
 y  x 


integrasyon
ifadesi
çarpanı
 a x dx
 b y dy
şeklindedir. .......................................................................... 54
e 
e 
10.6.1
Misal: .............................................................................................. 54
10.6.2
Misal: .............................................................................................. 55
11.
Lineer Diferansiyel Denklem Sistemleri (Linear Differential Equation Systems) . 56
11.1
Misal: ................................................................................................... 57
11.2
Misal: ................................................................................................... 58
11.3
Misal: ................................................................................................... 61
11.4
Misal: ................................................................................................... 61
4
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
11.5
Misal: ................................................................................................... 64
12.
İkinci Mertebeden Homojen Diferansiyel Denklemler (Second Order Homogeneous
Differential Equations) ......................................................................................... 66
12.1
Misal: ................................................................................................... 69
12.2
Misal: ................................................................................................... 69
12.3
Misal: ................................................................................................... 70
12.4
Misal: ................................................................................................... 70
12.5
Misal: ................................................................................................... 70
12.6
Misal: ................................................................................................... 71
13.
İkinci Mertebeden Homojen olmayan Diferansiyel Denklemler (Second Order
Nonhomogeneous Differential Equations) ............................................................... 72
13.1 Belirsiz Katsayılar Metodu ile Homojen Olmayan Diferansiyel Denklemin Çözümü
(Undetermined Coefficients Method) ................................................................... 72
13.1.1
Misal ............................................................................................... 73
13.1.2
Misal ............................................................................................... 74
13.1.3
Misal ............................................................................................... 75
13.1.4
Misal ............................................................................................... 75
13.1.5
Misal ............................................................................................... 76
13.1.6
Misal ............................................................................................... 77
13.2 Parametrelerin Değişimi Metodu ile Homojen Olmayan Diferansiyel Denklemin
Çözümü (The Method of Variation of Parameters) ................................................ 78
13.2.1
Misal ............................................................................................... 78
13.2.2
Misal ............................................................................................... 79
13.2.3
Misal ............................................................................................... 81
13.2.4
Misal ............................................................................................... 81
13.2.5
Misal ............................................................................................... 82
13.2.6
Misal ............................................................................................... 83
13.3
D Operator Metodu (The Method of Operators) .......................................... 84
13.3.1
Misal ............................................................................................... 86
13.3.2
Misal ............................................................................................... 87
13.3.3
Misal ............................................................................................... 88
5
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
13.3.4
Misal ............................................................................................... 89
13.3.5
Misal ............................................................................................... 89
14.
Tekrarlama Soruları (Review Problems) ....................................................... 90
14.1
Problems: ............................................................................................. 90
15.
Diferansiyel Denklemlerin Mühendislik Uygulamaları (Engineeering Applications of
Differential Equations) ......................................................................................... 93
15.1
Misal .................................................................................................... 93
15.2
Misal .................................................................................................... 94
15.3
Misal: ................................................................................................... 96
16.
Birinci mertebeden Diferansiyel Denklem problemleri (First Order Differential
Equation Problems) ........................................................................................... 100
16.1
Misal: ................................................................................................. 100
16.2
Misal: ................................................................................................. 100
16.3
Misal: ................................................................................................. 100
16.4
Misal: ................................................................................................. 101
Kaynaklar: ....................................................................................................... 101
1. Diferansiyel Denklemlere Giriş
Diferansiyel Denklemler, dünyadaki birçok fiziksel olayın matematik modeli, ortaya
çıkartıldığında, karşımıza çıkmaktadır. Bunu akışkanlar mekaniğinde bir sıvının
hareketinden tutun (Navier-Stokes denklemleri), mukavemette bir kirişin eğilmesi ve
titreşimi veya bir kolonun burkulması gibi birçok problemin çözümü aslında diferansiyel
denklemin çözümüdür. Bu konu ile ilgili bazı temel kavramların da önce iyi bilinmesi
gereklidir.
1.1
Diferansiyel Denklemin Tanımı
Öyle bir denklemdir ki; kendisi, kendisinin birinci veya daha fazla türevleri ve/veya bazı
değişken ve sabitleri ihtiva eden bir denklemdir. Matematik diliyle ifade edilmek
istenildiğinde aşağıdaki gibi;

dy(x) d 2 y(x)
F  x, y(x),
,
,
dx
dx 2

,
d n y(x) 
  c,
dx n 
x
  ,  
(1.1)
gibidir. Özel çözümü için başlangıç veya sınır şartlarının verilmiş olması gerekir ve
aşağıdaki şekilde ifade edilir.
6
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Bir diferansiyel denklemdeki en büyük türeve, o diferansiyel denklemin mertebesi denir
ve bu diferansiyel denklemde bulunan en yüksek mertebeli türevin üssüne de, bu
diferansiyel denklemin derecesi denir.
Aşağıdaki misalleri inceleyiniz.
3
dy
 2y  sin  x 
dx
5
(1. merteben, 1. dereceden diferansiyel denklem)
 d 2 y   dy 
6
 2      2y  x
 dx   dx 
(2. merteben, 5. dereceden diferansiyel denklem)
d4y
 q x
dx 4
(4. merteben, 1. dereceden diferansiyel denklem)
3
Yukarıda verilen misaller, sadece bir değişkene (x) bağlı olduğundan “Adi Diferansiyel
Denklem (ADD)” olarak adlandırılırlar. Değişken sayısı birden fazla olduğu takdirde
“Kısmî Diferansiyel Denklem (KDD)” olarak adlandırılırlar. Ayrıca, bir diferansiyel
denklemdeki bağımlı değişken ve tüm türevleri birinci dereceden ise, diferansiyel
denkleme “Lineer Diferansiyel Denklem” denir.
Eğer bağımlı değişken ve/veya değişkenin tüm türevlerinden biri bile ikinci veya daha
yüksek dereden ise buna “Lineer Olmayan Diferansiyel Denklem” denir ve bu tür
denklemlerin analitik çözümü zor veya daha henüz bulunamadığından, sayısal çözüm
yoluna gidilir.
dy
Bundan sonraki işlemlerde nokta (∙) zamana göre türevi ifade edecektir.( y 
)
dt
dy
(x e göre türev olarak algılanacaktır. Aşağıda sırasıyla her bir
dx
diferansiyel denklem türü, açıklamalarıyla birlikte verilecektir. Diferansiyel denklemin
çözümünden katsayılı (c, c1, c2, gibi) olarak elde edilen çözüme “Genel Çözüm” denir.
Diferansiyel denklem ile birlikte verilen başlangıç veya sınır şartlarının yerine yazılmasıyla
elde edilen çözüme “Özel Çözüm” denir ve bu çözümde, c, c1, c2, gibi katsayı bulunmaz.
Bunun yerine sayı ve/veya sayılar bulunur.
Ve
y 
1.2
Genel Çözümden Diferansiyel Denklemin Hesaplanması:
Genel çözümden diferansiyel denklemi hesaplamak için 2 yol vardır.
1.Yol:
Denklemin türevi alınarak çözüme gidilir.
Misaller:
1. Misal:
y  c  x 2 denkleminden, diferansiyel denklemi hesaplayınız.
Çözüm: y  2c  x 
c
y
2x
Bu değer genel çözümde yerine yazıldığında;
7
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
y 2
x
2x
y
x 2  y  2x  y  0


y 
2
y  0
x
2. Misal:
y  c1  x 2  c2  x 3 denkleminden diferansiyel denklemi hesaplayınız.
Çözüm: Genel çözümün 1. türevi alındığında; y  2c1  x  3c2  x 2
ve 2. türevi alındığında; y  2c1  6c2  x
değeri elde edilir. 3y  x  y değeri ile y  x  y değeri alt alta yazılıp toplandığında;
3 
y
y
x 
c1  x 2
c 2  x 3
1 

2c1x
3c2  x 2
x 
0

x  y  3y  c1  x

3y  x  y
x2
yazıldığında;
c1 
y

ve
2
c2 
3y  x  y 2 x  y  y 3
x 
x
x2
3x 2
6y  3  x  y   x  y  y  x  0
x  y  y
3x 2
y
y
 2c1  x 3c2  x 2

x  y  y 
2c1
6c2  x
0
3c 2  x 2
elde edilir. Bu değerler genel çözümde yerine
x  y  y
x
3

y  3y  x  y 

x 2  y  4x  y  6y  0
şeklinde genel çözüme ait diferansiyel denklem elde edilmiş olur.
2.Yol:
Genel çözümde kaç tane sabit varsa o kadar türev alınır ve denklemin determinantı sıfıra
eşitlenerek diferansiyel denklem hesaplanır. Bu usül daha uygundur.
3. Misal:
y  c  ex genel çözümünden diferansiyel denklemi hesaplayınız.
 y ex 
 0,  y  ex  y  e x  0,  y  y  0

x
 y e 
elde edilir.
4. Misal:
y  c1  x 2  c2  x 3 denkleminden diferansiyel denklemi hesaplayınız.
Çözüm: Genel çözümün 1. türevi alındığında; y  2c1  x  3c2  x 2 ve 2. türevi alındığında;
y  2c1  6c2  x değeri elde edilir. Bunlar  3  3 lük
determinantta yerine yazıldığında;
y 12x 2  6x 2   y  6x 3  2x 3   y  3x 4  2x 4   0
8
 y x2 x3 

2
 y 2x 3x   0
 y 2 6x 


PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
y  6x 2  y  6x 3  y  x 4  0   y  6  y  4x  y  x 2   x 2  0
x 2  y  4x  y  6y  0  y 
4
6
 y  2  y  0 elde edilir.
x
x
5. Misal:
y  c1  e2t  c2  e3t
Genel çözümü
hesaplayınız.
olan
y
fonksiyonunun
diferansiyel
denklemini
Çözüm:
 y e2t

2t
 y 2e
 y 4e2t

e 3t 

3e 3t   0
9e 3t 

y 18e t  12e t   y  9e t  4e t   y  3e t  2e t   0
y  30e t   y 5e t   y  5e t   0

30  e t  y  5  e t  y  5  e t  y  0
5  y  5  y  30  y   e t

y  y  6 y  0
0
şeklinde diferansiyel denklem elde
edilir. Veya y  c1  e2t  c2  e3t fonksiyonunda kökler bilindiğinden karakteristik denklemden
yararlanarak diferansiyel denklem bulunabilir.
 r  r1    r  r2   0

y  y  6 y  0
olduğu görülür.
 r  2   r  3  0
r2  r  6  0 

2. Ayrılabilir Diferansiyel denklemler ve uygulamaları (Separable Differential
Equations and their applications)
Tanımlama:
Bir diferansiyel denklemde bağımlı değişkenler (genellikle y) bir tarafta ve bağımsız
değişkenler (genellikle x) bir tarafta kalacak şekilde, cebirsel olarak yazılabiliyorsa,
integral alınarak fonksiyon hesaplanabilir ve buna 1. mertebeden ayrılabilir diferansiyel
denklem denir.
Birinci mertebeden bir diferansiyel denklem x ve y ler bir tarafta olacak şekilde
ayrılabiliyorsa buna ayrılabilir diferansiyel denklem denir.
Diferansiyel Denklemlerin en basit halidir ve Birinci mertebeden değişkenlerine ayrılabilir
diferansiyel denklem:
A  x   dx  B  y   dy  0
(2.1)
şeklinde tanımlıdır. Her iki tarafın integrali alınarak çözüm yapılır.
 A  x   dx   B  y   dy  c
(2.2)
9
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Burada c integral sabitini göstermektedir.
2.1
Misal:
Aşağıdaki diferansiyel denklemin genel çözümünü hesaplayınız.
dy
 2  x  dx 
y
dy
 2xy 
dx
1
 y  dy   2  x  dx  0
 
Her iki tarafın integrasyonu alınmasıyla
1
  y   dy    2x   dx  c

ln(y)  x 2  c
Elde edilir. Exponansiyeli alındığında (e üzerili yazıldığında):
eln(y)  ex
2
c
 eln(y)  ex  eC
2
(c  eC )  eln(y)  c  ex
2.2
2

Genel çözüm:
y  c  ex
şeklindedir.
2
Misal:
Aşağıdaki diferansiyel denklemin genel çözümünü hesaplayınız.
dy
x
 1  2  x 2   tan  y 
dx

 1 
1


 dy    2  x  dx  0
x

 tan  y  
1  2  x
dy

tan  y 
x
2
 dx
 cos  y  
1


 dy    2x  dx  0
x

 sin  y  

Her iki tarafın integrasyonu alındığında;
 cos  y  
1

  sin  y  dy    x  2x  dx  c


ln sin  y    ln  x   x 2  c

eln(sin(y))  eln(x)x c  eln(sin(y))  eln(x)  e x  eC
2
2

sin(y)  c  x  e x , (c  eC ) veya sonuçlar: y  arcsin c x  e  x
2
2

şeklinde gösterilebilir.
Dikkat: Her diferansiyel denklemin genel çözümü, eşitliğin bir tarafında değişkenler ve
diğer tarafında sadece fonksiyonun kendisi kalacak şekilde (Explicit form) ifade edilemez,
mesela:
x 2  y  x  y2  sin(x  y)
2.3
denkleminde olduğu gibi
Misal:
Aşağıdaki diferansiyel denklemin genel çözümünü hesaplayınız.
10
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
x 2 y3
x2
Çözüm: x  dx  y  dy  0   xdx   y dy  c 
  c  3  y3  3c
2
2
3
2
2
1

x2
y3  3  3c
2
2.4
Misal:

 x2
3
y  3  C
 2

Aşağıdaki diferansiyel denklemin genel çözümünü hesaplayınız.
dy y 2 x 3

dx
1
y  y2x 3

Açıklama:
 u  u  v  u  v
,
  
v2
v

1
x4
c
y
4
1 4c  x 4

y
4

Çözümü: y 
2.5
4
,
C  x4
dy
 x 3dx
2
y

x 3dx 
dy
0
y2
 1  1
  y   y2


x4  1 
 
c
4  y 
dy
 x dx   y2  c
3


x4 1
 c
4 y

y
4
4

4
4c  x
4c  x 4
 C  4c 
Misal:
Aşağıdaki diferansiyel denklemin genel çözümünü hesaplayınız.
x 1
y4  1
y 
 y
4

dy x  1

dx y 4  1
 1 dy    x  1 dx  c


y
4
 1 dy   x  1 dx  0
y5
x2
y x c
5
2
Yukarıda görüldüğü gibi sonuçları her zaman açık (explicit) formda vermek mümkün
olmadığından kapalı (implicit) formda göstermek daha uygundur.
2.6
Misal:
y  2t   y2  9  şeklinde verilen diferansiyel denklemin genel çözümünü hesaplayınız.
Çözüm: y 
dy
 2t   y 2  9 
dt

 1 
 y2  9  dy   2t  dt  0


1
 1 
x
Integral tablosundaki kural (10)   2
dx  arctan   uygulandığında:
2 
a
x a 
a
11
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin

  y
2
1 
dy    2t  dt  c 
 32 
1 1  y  2
tan    t  c
3
 3
y
tan 1    3t 2  3c 
 3

 y 
tan  tan 1    tan 3t 2  3c 
 3 

y
 tan 3t 2  3c
3
y  3  tan 3t 2  C ,
2.7

 C  3c 
Misal:
Aşağıdaki diferansiyel denklemin genel çözümünü hesaplayınız.
x  cos  x   dx  1  6y5  dy  0, y( )  0 
Integral
uygulandığında;
cos  x   x sin  x   y  y6  c

x yerine  konduğunda;
cos     sin    c  y6  y
(84)
5
cos  x   x sin  x   c  y6  y

cos  x   x sin  x   1  y6  y
c  1
kural
 x  cos  x  dx   1  6y  dy  c
 x  cos  x   dx  cos  x   x  sin  x 
1    0  c  06  0 
tablosundaki
cos     sin    c  06  0
elde
edilir.
Görüldüğü
gibi bir diferansiyel denklemi her zaman açık formda yazmak mümkün değildir
2.8
y 
Misal:
yx
diferansiyel denklemin genel çözümünü hesaplayınız.
x
yx
dy y  x

  y  x   dx  x  dy


 y  x   dx  x  dy  0
x
dx
x
A  x   dx  B  y   dy  0
ayrılabilir diferansiyel denklem türüne uymamaktadır. Lineer
Çözüm: y 
diferansiyel ve homojen diferansiyel denklem türüne uygundur. Çözümü daha sonra
yapılacaktır
2.9
Misal:
Aşağıda verilen birinci mertebeden diferansiyel denklemin genel çözümünü ve verilen
başlangıç şartı için özel çözümünü hesaplayınız.
ex  dx  y  dy  0, y(0)  1 
y2
 ex  c
2

x
 e dx   ydy  c
y2  2ex  C 
1  2e0  C
y2
 c Genel çözümdür.
2

ex 

C  2 1  1 
çözümdür. y   2ex  1 çünkü verilen başlangıç şartını sağlamaz.
12
y  2ex  1
özel
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
3. Birinci Mertebeden Homojen Diferansiyel Denklemler ve uygulamaları (Firstorder homogeneous Differential Equations and their applications)
dy
şeklinde ise buna 1.mertebeden homojen diferansiyel
 f (x, y) ve
f (x, y)  f (tx, ty)
dx
denklem denir ve aşağıdaki şekilde indirgeme yapılarak 1. mertebeden ayrılabilir
diferansiyel denkleme dönüştürülüp çözümü yapılır.
dy
 f (x, y) ise y  u  x değişken dönüşümü uygulanabilir. Buradan;
dx
dy
du
 ux
dx
dx
yapılarak
elde edilir. Bu çözüm yapıldıktan sonra tekrar geri dönüşüm ( u 
çözüm
tamamlanır.
Veya
dx
 f (x, y)
dy
ise
x  vy
değişken
y
)
x
dönüşümü
uygulanabilir. Buradan;
dx
x
dv
elde edilir. Bu çözüm yapıldıktan sonra tekrar geri dönüşüm ( v  )
 v  y
dy
y
dy
yapılarak çözüm tamamlanır.
3.1
Misal:
yx
diferansiyel denklemin genel çözümünü ve y 1  0 sınır şartı için
x
de özel çözümünü hesaplayınız.
2.8 de verilen y 
y  f (x, y) 
yx
x

f (x, y)  f (tx, ty)
olup olmadığı test edilmelidir.
yx
t  y  t  x t   y  x 
olduğundan
1.
, f (t  x, t  y) 

x
tx
t  x
diferansiyel denklemdir ve y  u  x dönüşümü uygulanmalıdır.
f (x, y) 
ux
du u  x  x x   u  1


 u 1
dx
x
x
1
  dx  du
x
1
  x   dx   du  c

x
du
 u 1 u
dx
ln  x   c  u ln  x   c 
y
x
x
mertebeden
homojen
du
1
dx
y  ln  x   c  x
Şeklinde genel çözüm elde edilir. Verilen sınır şartları kullanılarak özel çözüm bulunur.
y  ln  x   c   x  0  ln 1  c  1  0  0  c 1  c  0  y  x  ln  x  Özel çözümüdür.
13
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
3.2
Misal:
y 
dy 2y4  x 4
ile diferansiyel denklemi çözünüz. (Bernoulli ile de çözülebilir.)

dx
xy3
2  ty    tx 
4
2y 4  x 4
y  f (x, y) 
xy3
f (tx, ty) 
ve
 tx  ty 
diferansiyel denklemdir. y  u  x
4
du 2  ux   x
ux

3
dx
x  ux 
4
du 2u 4  1

dx
u3

x4 
2
1
4
c
1
 c14
4
4 1

4
y x 4
(
)
x4
3.3
y


t 4  xy3 
 f (x, y)
olduğundan
homojen
değişken dönüşümü uygulandığında;

x
4
4
4
4
du 2  ux   x
2u 4 x 4  x 4 x   2u  1 2u 4  1
ux




3
dx
x 4u3
u3
x  ux 
x 4   u3 
du 2u 4  1

u
dx
u3

eln(x)  eln(u

4
1)
x4 

1
4
x
du 2u 4  1  u 4

dx
u3

x
du u 4  1

dx
u3
 u3 
1

dx

  x 
  u4  1  du  c
 u3 
1
dx

 
 4
 du 
x
 u 1
1 dx
u3

 4
x du u  1
ln(x)  ln(u 4  1)
3
t 4  2y4  x 4 
dy
du
ux
dx
dx
dy  u  dx  x  du
ux
4
 ec
x  (u 4  1)


1
4
 ec
 C  c14  
1
 c14
4
4
y x
x4
x (
y4 x 4  14
 )  ec
x4 x4
x8
 C elde edilir.
x 4  y4
Misal:
 2xy   dx  x 2  dy  0 diferansiyel denklemin genel çözümünü hesaplayınız.
dy
dy y 2  2xy


 y  2xy   x dx  0
dx
x2
f (x, y)  f (tx, ty) olup olmalıdır.
2
homojen
2
2
2
t 2 y 2  2tx  ty t   y  2xy 
y2  2xy

ve f (tx, ty) 
f (x, y) 
t 2x 2
x2
t2  x2
y  ux
ux

du
 u 2  2u
dx
 u 
ln 
  ln  x   c
 u 1
ux

olması
dy
 f  x, y 
dx
için
f (x, y)  f (tx, ty) dir.

2
2
2
du  u  x   2x   u  x  x   u  2u 


dx
x2
x2
x
du
 u2  u 
dx

e


ln u 
 u 1 
e
du
dx

u u x

 ec
u
 ec  x ,
u 1
2
ln x 
14

u
du
dx

c
u
x
2
e
c
 C
ve
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
u
 Cx
u 1

x
1

1 
y Cx
3.4
y
x
y
1
x
y
y
x

 Cx
x xy
 Cx 
C  x2
1 C x
y

x2
1 x
C
y
 Cx 
xy

y
x2
C1  x
xy
1

y
Cx
elde edilir.
Misal:
y
x  dy  y  dx  x  cot    dx diferansiyel denklemini çözünüz.
x
y  ux
ve
dy  u  dx  x  du
 u x
x   u  dx  x  du   u  x  dx  x  cot 
 x
dönüşümleri uygulandığında;

2
  dx  u  x  dx  x  du  u  x  dx  x  cot  u   dx

x 2  du  x  cot  u   dx  x  du  cot  u   dx 
ln  cos  u    ln  x   c 
4. Birinci
cos  u 
1
 sin  u   du   x  dx  c
  ln  cos  u    ln  x   c

 y 
ln  cos     ln  x   C olarak bulunur.
 x 

Mertebeden
Değişkenlerine
Ayrılabilen
veya
Homojen
Hale
İndirgenebilen Diferansiyel Denklemler (First Order Differential Equations
which can be separable or converted into homogenous)
Bu bölümde ilk bakışta homojen olmadığı halde değişken dönüşümü yapılarak homojen
hale indirgenebilen diferansiyel denklemler incelenecektir. Aşağıda bunlarla ilgili her bir
tür ve bu tür ile ilgili değişken dönüşümü verilmiştir.
1
dy
 f a  x  b  y  c ,
dx
2.
dy y
y
y
  g x  f  ,  u 
dx x
x
x
(4.2)
3.
y f  x  y   dx  x  g  x  y   dy  0  u  x  y
(4.3)
4.
 a x  b1y  c1 
dy
f 1
,
dx
a
x

b
y

c
 2
2
2 
(4.4)
b  0,
a, b,c sabitler,  u  a  x  b  y  c
b  0,
a1 , b1 ,c1 ,a 2 , b 2 ,c 2 sabitler
Olmak üzere üç durum söz konusudur.
15
(4.1)
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
a1 b1 c1
dy

  , 
 g 
a 2 b2 c 2
dx
a)
(4.5)
olur. Ve diferansiyel denklemin çözümü, y  g     x  c şeklindedir
a1 b1 c1
dy
 

 F a  x  b  y 
a 2 b2 c 2
dx
b)
(4.6)
olur ve z  a  x  b  y değişken dönüşümü yapılarak çözüme gidilir. Burada kullanılan a
ve b katsayıları keyfi seçildiği halde, denklem sonucu değişmemektedir. Bu durum aynı
problemde farklı katsayılar kullanılarak misaller kısmında gösterilmiştir. Genelde z=x+y
veya z=x-y kullanmak en pratik çözümlerden birisidir.
a1 b1

 x  u  h, y  v  k
a 2 b2
c)
(4.7)
değişken dönüşümü yapılır. Bilinmeyen katsayıları (h ve k) bulmak için,
a1  h  b1  k  c1  0 ve a 2  h  b2  k  c2  0 ve denklemleri kullanılır.
Bunlar dışında özel dönüşümler yapılarak değişkenlere ayrılabilen diferansiyel denklemler
elde edilebilir Aşağıda bunlar ile ilgili misaller verilmiştir.
4.1
Misal:
 3  x  2  y  1
2
 dx  dy  0 şeklinde verilen diferansiyel denklemin genel çözümünü elde
ediniz.
Çözüm:  3  x  2  y  1 
2
dy
dx dy
dy
2
2
  3  x  2  y  1

0 
 0   3  x  2  y  1 
dx
dx dx
dx
değişken
dönüşümü
uygulanmalıdır.
du  3  dx  2  dy
u  3 x  2  y  1
du
dx
dy
1 du 3 dy
dy 3 1 du
dy
2
  3  x  2  y  1
 3
 2
  
 
 


dx
dx
dx
dx 2 2 dx
2 dx 2 dx
dx
3 1 du
 
 u2
2 2 dx
du
 dx
3  2  u2
1
 3 2u
2

3
1 du
2 2 
 2  u2
2
2 dx
 du   dx  c 

du
 3  2  u2
dx

du 3  2  u 2

dx
1


1
1

 6  arctanh  u  6   x  c olur. u değeri yerine yazıldığında,
6
3

1
1

 6  arctanh   3  x  2  y  1  6   x  c şeklinde genel çözüm elde edilir.
6
3

16
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
4.2
Misal:
dy y
 y2 
   x  1   1  2  , y 1  1 şeklinde verilen diferansiyel denklemin genel ve özel
dx x
 x 
çözümünü hesaplayınız.
Çözüm: Diferansiyel denkleme dikkat edildiğinde
dy y
y
  g  x   f   türüne benzediği
dx x
x
y
dönüşümü uygulanmalıdır. Buradan y  u  x
x
dy
du
dy
du
dx
 x u
 x  u
yazılabilir. dy  x  du  u  dx 

dx
dx
dx
dx
dx
görülmektedir. Bu sebepten dolayı u 
Bu değerler verilen diferansiyel denklemde yerine yazıldığında,
du
du
dy y
 y2 
  x  1  1  u 2 
   x  1   1  2   x   u  u   x  1  1  u 2   x 
dx
dx
dx x
 x 
du
du
 1 
 1
 x 1
 1



du



1



dx
dx


 1    dx  c






2
1  u2  x 
1  u2  x 
1 u 
 x
arctan  u   x  ln  x   c 
y
arctan    x  ln  x   c
x
şeklinde genel çözümü bulunur
y 1  1 şartının genel çözümde yerine yazılmasıyla özüm çözüm elde edilir.


y
1
arctan    x  ln  x   c  arctan    1  ln 1  c   1  0  c  c   1
4
4
x
1

y
arctan    x  ln  x    1
4
x
şeklinde verilen diferansiyel denklemin özel çözümü elde edilir.
4.3
Misal:
y  1  x  y   dx  x   x 2  y2  1  dy  0
şeklinde
verilen
diferansiyel
denklemin
genel
çözümünü ve y 1  0 şartını kullanarak özel çözümünü hesaplayınız.
Çözüm: Diferansiyel denkleme dikkat edildiğinde yukarıda verilen,
y f  x  y   dx  x  g  x  y   dy  0 üçüncü türe benzediği görülmektedir. Dolayısıyla u  x  y
u
dönüşümü yapılarak çözüme gidilmelidir. u  x  y  du  y  dx  x  dy y 
x
17
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
du
dy du u
dy du
dy
du
dx
dy
 yx


y  x 
 y
x

 x
dx
dx
dx
dx dx x
dx dx
dx
dx
y   2  x  y   dx  x   x 2  y2  1  dy  0  y   2  u  
dx
dy
  u 2  1  x   0
x
dx
du u
u 1
u
u
 du u  u u  1
 du u 
 


 1  u    u 2  1      0       2
dx x u  1   u  1 x
x
 dx x  x u  1
 dx x 


du u 1
u
du u 1
du
2  u 1
u u  u 1
 
 

 

 
dx x u  1 x
dx x u  1 x x   u  1
dx x   u  1
1
1
1
 u 1 

u

 u  ln  2  u  1  ln  x   c


du


dx


2
4
x
 2  u 1
1
1
 x  y   x  y  ln  2  x  y  1  ln  x   c şeklinde genel çözüm bulunur. Özel çözümünü
2
4
bulmak için verilen değerler yerine yazılmalıdır.
1
1
1  0  1  0  ln  2  x  y  1  ln 1  c  Buradan c  0 olduğu görülür. Böylece özel
2
4
çözüm,
1
1
 x  y   x  y  ln  2  x  y  1  ln  x 
2
4
4.4
Misal:
 6  x  4  y  2   dx  3  x  2  y  1  dy  0
şeklinde verilen diferansiyel denklemin genel
çözümünü hesaplayınız.
Çözüm: katsayılar oranı kontrol edildiğinde 4’ün a) türüne benzediği görülmektedir.
a1 b1 c1
6 4 2
 
 
    2  y  x  c  y  2x  c
a 2 b2 c 2
3 2 1
Çözümün doğru olup olmadığı verilen diferansiyel denklemde yerine yazılarak sağlaması
yapılabilir.
6  x  4  y  2 
dy
dx
dy
  3  x  2  y  1   0   6  x  4  y  2    3  x  2  y  1   0
dx
dx
dx
6  x  4   2  x  c   2  3  x  2   2  x  c   1  2  0
 6  x  8  x  4  c  2   3  x  4  x  2  c  1  2  0
18
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 2  x  4  c  2    2  x  4  c  2   0  0  0
4.5
çözümün olduğu görülür.
Misal:
 2  x  2  y  1  dx   x  y  1  dy  0
şeklinde
verilen
diferansiyel
denklemin
genel
çözümünü ve y(1)  0 hesaplayınız.
Çözüm 1: katsayılar oranı kontrol edildiğinde 4’ün b) türüne benzediği görülmektedir.
a1 b1 c1
2 2 1
 z  a  x  b  y  a  1, b  1 olarak kabul edildiğinde,
 
 

a 2 b2 c 2
2 2 1
z  x  y  y  x  z olur. Bu durumda dz  dx  dy  dy  dx  dz haline gelir.
Bu değerler verilen diferansiyel denklemde yerine yazıldığında,
 2  x  2  y  1  dx   x  y  1  dy  0
 2  x  2   x  z   1  dx   x   x  z   1  dx  dz   0
 2  x  2  x  2  z  1  dx   x  x  z  1  dx   x  x  z  1  dz  0
 3  z   dx   z  1  dz  0
 3  dx 
z 1
 1
 dz   3  dx   1    dz  c
z
 z
3  x  z  ln  z   c  3  x  z  ln  z   c  3  x   x  y   ln  x  y   c
Şeklinde genel çözüm elde edilir. Verilen sınır şartının uygulanmasıyla;
3  x   x  y   ln  x  y   c  y(1)  0  3 1  1  0  ln 1  0  c  3  1  ln 1  c
3  1  0  c  c  2  2  x  y  ln  x  y   2 verilen sınır şartına uygun özel çözümdür.
Çözüm 2: katsayılar oranı kontrol edildiğinde 4’ün b) türüne benzediği görülmektedir.
a1 b1 c1
2 2 1
 z  a  x  b  y  a  1, b  1 olarak kabul edildiğinde,
 
 

a 2 b2 c 2
2 2 1
z  x  y  y  x  z olur. Bu durumda dy  dx  dz haline gelir.
Bu değerler verilen diferansiyel denklemde yerine yazıldığında,
 2  x  2  y  1  dx   x  y  1  dy  0
 2  x  2   x  z   1  dx   x   x  z   1  dx  dz   0
 2  z  1  z  1  dx   z  1  dz  0
 z  dx   z  1  dz  0
19
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 z 1
 1
 1
z  dx   z  1  dz  dx  
  dz  dx   1    dz   1  dx   1    dz  c
 z 
 z
 z
x  z  ln  z   c  x  y  x  ln  y  x   c  2  x  y  ln  x  y   c
2  x  y  ln  x  y   c  2 1  0  ln 1  0  c  2  0  c  c  2
2  x  y  ln  x  y   2 şeklinde özel çözüm elde edilir.
4.6
Misal:
 2  x  y  1  dx   x  2  y  1  dy  0
şeklinde
verilen
diferansiyel
denklemin
genel
çözümünü hesaplayınız.
Çözüm: katsayılar oranı kontrol edildiğinde 4’ün c) türüne benzediği görülmektedir.
a1 b1
2 1

 
 x  u  h, y  v  k değişken dönüşümü uygulanmalıdır.
a 2 b2
3 2
İlk olarak h ve k katsayıları hesaplanmalıdır. Bunun için yukarıda verilen iki denklemden
faydalanılır.
a1  h  b1  k  c1  0
a 2  h  b2  k  c2  0

2  x  y 1  0
x  2  y 1 0

2  h  k 1  0
h  2  k 1  0

h 1
k 1

x uh
yvk

x  u 1
y  v 1
Buradan
 2  x  y  1  dx   x  2  y  1  dy  0
 2   u  1   v  1  1  du   u  1  2   v  1  1  dv  0
 2 u  v   du  u  2 v   dv  0
Yukarıdaki diferansiyel denklemde üsler toplamı eşit olduğundan, homojen diferansiyel
denklem türüne benzemektedir. Bunun için u  r  v değişken dönüşümü uygulanabilir.
Buradan du  v  dr  r  dv olduğu görülür. Bu iki değer yerine yazıldığında,
 2 u  v   du  u  2 v   dv  0

 2 r  v  v    v  dr  r  dv   r  v  2 v   dv  0
v   2 r  1  dr   2 r 2  2   dv  0 
2 r  1
1
 dr   dv  0
2
2r  2
v
1
3
1 u  3 u 
ln  v   ln  r  1  ln  r  1  C  0  ln  v   ln   1  ln   1  C  0
4 v  4 v 
4
4
20
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
x  u 1
u  x 1
1 u  3 u 
ln  v   ln   1  ln   1  C  0 

y  v 1
v  y 1
4 v  4 v 
1  x 1  3  x 1 
ln  y  1  ln 
 1  ln
 1  C  0 Şeklinde genel çözüm elde edilir.
4  y  1  4  y  1 
4.7
Misal:
 x  2 y  1  dx   2 x  y  1  dy  0
şeklinde
verilen
diferansiyel
denklemin
genel
çözümünü hesaplayınız.
Çözüm: katsayılar oranı kontrol edildiğinde 4’ün c) türüne benzediği görülmektedir.
a1 b1
1 2

 
 x  u  h, y  v  k değişken dönüşümü uygulanmalıdır.
a 2 b2
2 1
İlk olarak h ve k katsayıları hesaplanmalıdır. Bunun için yukarıda verilen iki denklemden
faydalanılır.
a1  h  b1  k  c1  0
a 2  h  b2  k  c2  0

x  2  y 1  0
2  x  y 1  0

h  2  k 1  0
2  h  k 1  0

h  1
k  1

x uh
yvk

x  u 1
y  v 1
Buradan
 x  2  y  1  dx   2  x  y  1  dy  0
 u  1  2   v  1  1  du   2   u  1   v  1  1  dv  0
 u  1  2  v  2  1  du   2  u  2  v  1  1  dv  0
 u  2 v   du  2 u  v   dv  0
Yukarıdaki diferansiyel denklemde üsler toplamı eşit olduğundan, homojen diferansiyel
denklem türüne benzemektedir. Bunun için u  r  v değişken dönüşümü uygulanabilir.
Buradan du  v  dr  r  dv olduğu görülür. Bu iki değer yerine yazıldığında,
 u  2 v   du  2 u  v   dv  0
 r  v  2 v   dr  r
2

 r  v  2 v    v  dr  r  dv   2 r  v  v   dv  0
1
 r2 
 1  dv  0   2   dr   dv  0
v
 r 1
1
3
1
 r 2 
 dr    dv  c  ln  v   ln  r  1  ln  r  1  c  0
2
1
v
2
2
  r
21
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
1 u  3 u 
ln  v   ln   1  ln   1  c  0
2 v  2 v 
x  u 1
u  x 1
1 u  3 u 
ln  v   ln   1  ln   1  c  0 

y  v 1
v  y 1
2 v  2 v 
1  x 1  3  x 1 
ln  y  1  ln 
 1  ln
 1  c  0 Şeklinde genel çözüm elde edilir.
2  y  1  2  y  1 
5. Birinci Mertebeden Lineer Diferansiyel Denklemler ve uygulamaları (First-order
Linear Differential Equations and their applications)
Diferansiyel denklem;
dy
 p  x   y  q  x   y  p  x   y  q  x 
dx
(5.1)
şeklinde ise buna 1. mertebeden lineer diferansiyel denklem denir ve çözümü aşağıdaki
gibi yapılabilir.
1.Yol:
y  u x  v x
(5.2)
değişken dönüşümü uygulandığında y  p  x   y  q  x  denklemi;
u  v  u  v  p  x   u  v  q  x 
(5.3)
u  v  u  v  p  x   u  v  q  x 
u  v  u  v  p  x   u  v  q  x 
u  v   u  p  x   u   v  q  x 
haline gelir.
u  p  x   u  0
(5.4)
olacak şekilde seçildiğinde; u  p  x   u olur ve buradan;
du
 p  x   u
dx
e
ln u 
 p x dx
e 

du
 p  x   dx
u
ln  u     p  x   dx

yazılabilir. Gerekli sadeleştirmeler yapıldığında;
 p x dx
ue 
(5.5)
olduğu görülür. Denklem (4.3) açılarak tekrar yazıldığında;
22
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
u  v  x   u  x   v  p  x   u  x   v  x   q  x 
veya
 u  p  x   u  x    v  x   u  x   v  q  x  elde edilir. Denklem (4.4) ten dolayı sıfır olan terim
0
atıldığında geriye;
u  x   v  q  x 
(5.6)
u  x   v  q  x 
ifadesi kalır. Buradan v(x) ifadesi, v 
kullanıldığında, v  e 
v   e
p x dx
p x dx
 q x
1
 q x
u x
olur. u(x) yerine denklem (5.4)
 v   e

 p x dx  q  x   dx  c
veya
 q  x   dx  c
(5.7)
Elde edilir. Denklem (3.2) den dolayı,
 p x dx 
p x dx
y x  e 
  e
 q  x   dx  c 


(5.8)
Genel çözümü elde edilir. Çözümler bu son denklem vasıtasıyla yapılır. Veya
2. Yol:
Öyle bir u(x) fonksiyonu seçelim ki;
d
dy du
 u  y  u    y olsun. Bunun için 1. mertebeden lineer diferansiyel denklem u ile
dx
dx dx
aşağıdaki gibi çarpılır.
 dy

u    p  x   y  u  q  x 
 dx


Buradan görüldüğü gibi
du
 u  p x 
dx
ln u 
 e
p x dx
u
dy
  u  p  x    y  u  q  x 
dx 
du
 p  x   dx olmalıdır. İntegral alındığında
u
u  e
p x dx
ln  u    p  x  dx

d
 u  y  u  q  x 
dx
olduğundan her iki tarafın integrali alındığında;
d
 dx u  y   u  q  x   dx  c
e


sonucuna varılır. Ayrıca;
u  y   u  q  x   dx  c
veya;
 p x dx 
p x dx
y x  e 
  e
 q  x   dx  c 


23

y
1
u  q  x   dx  c 

u 
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
olduğu görülür. Her iki usulle hesaplanan neticeler birbirinin aynısıdır.
5.1
Misal:
Misal 2.8 de verilen y 
yx
diferansiyel denklemin genel çözümünü hesaplayınız.
x
dy y  x

dx
x
dy 1
 y  1 Buradan denklemin y  p  x  y  q  x  yapısına uygun
dx x
1
olduğu görülür. Böylece p  x    , q  x   1 dir.
x
Çözüm 1:
 p x dx 
p x dx
y x  e 
  e
 q  x   dx  c  denkleminde yerine yazıldığında;


1
p  x        dx   ln  x 
x
1
1

  x dx     x dx
y x  e
  e
 1  dx  c 


y x  e
y  x   x  ln  x   c
olduğu görülür.
Çözüm 2:

y 
yx
x

u  ln  x   c
5.2
y  u  x  u  1
y  x  y  x 
u  x 2  u  x  u  x  x

  e

 ln x 
 1  dx  c 

 1

y  x   x       dx  c 
 x

 1

y  x   x    ln x   1  dx  c 
 e

y  ux
ln x 

y
 ln  x   c
x
dönüşümü sisteme uygulanır.
y  x  y  x 
 u  x  u   x  u  x  x
u  x  1
du 1

dx x


1
 du    x  dx  c
y  x   x  ln  x   c olduğu görülür.

Misal:
x 2  y  x  y  x 2  sin  x  halinde diferansiyel denklemin genel çözümünü bulunuz.
Çözüm 1: denkleme bakıldığında x 2 li terimler dikkati çekmektedir. Her taraf x 2 ye
bölündüğünde;
y 
1
 y  sin  x 
x
1
elde edilir ve burada. p  x       dx  ln  x  ve q  x   sin  x  dir.
x
 p x dx 
p x dx
Genel denklem y  x   e 
  e
 q  x   dx  c  de yerine yazıldığında;


24
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
y x 
y x 
1 
 x  sin  x   dx  c 
ve

x 
1
y  x   sin  x   x  cos  x   c 
x
 x  sin  x   dx  sin(x)  x  cos  x  olduğundan
veya
sin  x 
c
 cos  x   şeklinde elde edilir.
x
x
Çözüm 2: y  u  x 
y  u  x  u  1
x 2  y  x  y  x 2  sin  x 

u  x  2  u  sin  x  
u 
y 
1  2 sin(x)

 x 
 dx  c 
2 
x 
x

u
1
 sin  x   x  cos  x   c 
x2 
y
sin  x 
c
 cos  x  
x
x
5.3
y 
dönüşümü sisteme uygulanır.
1
 y  sin  x 
x
sin  x 
2
u 
x
x
1
1
2 dx 
2 dx sin(x)

u x   e  x   e  x 
 dx  c 
x


u x 
dolayı:

u  x  u 

1
 u  x  sin  x 
x
 p x dx 
p x dx
y x  e 
  e
 q  x   dx  c 



u x  e

   ln x2  sin(x)

  e

 dx  c 
x


ln x 2
u x 
1 
 x  sin(x)  dx  c 

x2 

y 1
  sin  x   x  cos  x   c 
x x2 
genel çözümdür. Her iki çözümün de aynı olduğu görülür.
Misal:
1
 y  e x halinde verilen diferansiyel denklemin genel çözümünü hesaplayınız.
x
1
p  x       dx  ln  x  ve q  x   ex olduğu görülür.
x
 p x dx 
p x dx
y x  e 
  e
 q  x   dx  c  genel denklemde yerine yazıldığında;


1 
  x  e x  dx  c

x 
olduğundan;
y x 
y x 
1
 (x  1)  ex  c
x
5.4
Misal:
integral tablosundan
kural
(54):  x  ex  dx   x  1  e x
elde edilir.
y  2x  y  x diferansiyel denkleminin genel çözümünü hesaplayınız.
25
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Çözüm: p  x   2x   p  x   dx   2x  dx  x 2 ve q  x   x olduğu görülür.
 p x dx 
p x dx
y x  e 
  e
 q  x   dx  c  genel denkleminde yerine yazıldığında;


2
1 2
integral tablosundan:  ex  x  dx  e x olduğundan;
2
y  x   e x    ex  x  dx  c 


2
2
2
1 2

y  x   e x   ex  c
2

5.5
2
1
 c  e x
2
olarak genel çözüm elde edilir.
Misal:
x y  x
2
x3
y x 
4
cos  x    dx  x 3  dy  0 diferansiyel denkleminin genel çözümünü hesaplayınız.
dy
 x 2 y  x 4 cos  x 
dx
p  x    ln  x 
ye
ln x 
  e

 ln x 


dy 1
  y  x cos  x  
dx x
g  x   x  cos  x 
  x  cos  x    dx  c 

y  x   x    cos  x   dx  c 



p x  
1
x

1
p  x       dx
x
 p x dx 
p x dx
ye 
  e
 q  x   dx  c 



 1

y  x     x  cos  x   dx  c 
 x

y  x  sin  x   c
6. Bernoulli Denklemi
dy
 p  x   y  q  x   yn
dx
(6.1)
şeklinde verilen denklemlere “Bernoulli denklemi” denir ve çözümü için denklemin her iki
tarafı y  n ile çarpıldığında;
y n 
dy
 p  x   y  y n  q  x   yn y n
dx
veya y  n 
dy
 p  x   y1n  q  x  haline gelir.
dx
u  y1n
(6.2)
dönüşümü uygulandığında;
du
dy
 1  n   y  n 
olur. Buradan;
dx
dx
1
du
  p x  u  q x
1  n  dx
y n 
dy
1
du


olduğu görülür.
dx 1  n  dx
her iki taraf 1  n  ile çarpıldığında;
26
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
du
 1  n   p  x   u  1  n   q  x 
dx
Böylece 1. mertebeden lineer diferansiyel denklem elde edilmiş olur. Burada çözüm
tamamlandıktan sonra denklem (6.2) den faydalanarak sonra
u  y1n
ile y fonksiyonu
hesaplanmış olur.
6.1
Misal:
y  x  y  x  y2 şeklinde verilen diferansiyel denklemin çözümünü hesaplayınız.
Çözüm: denklemin her iki tarafı y 2 ile çarpıldığında; y 2 
dy
 x  y 1  x  u  y12  y1
dx
du
dy
dy
du
dy
 1  y 2 

  y 2 
 y 2 
değişken dönüşümü uygulandığında;
dx
dx
dx
dx
dx

du
 xu  x
dx

du
 x  u  x
dx
elde edilir. Buradan;
 p x dx 
p x dx
u x  e 
  e
 q  x   dx  c 


u  x   e
xdx
1
x
 xdx
    e   x  dx  c  u  x   e 2


2
1
 x2


    e 2  x  dx  c 


1 2
x
  1 x2

u  x   e 2  e 2  c 


1 2
x


u  x   1  e 2  c 


Elde edilir. Buradan
y
6.2
1
1 2
x


2
1

e
c



1 2
x

1 
 1  e 2  c 
y 

olduğu görülür.
Misal:
dy
 2y  x  y 2 şeklinde verilen diferansiyel denklemin çözümünü hesaplayınız.
dx
Denklemin her iki tarafı y 2 ile çarpıldığında;
dy
dy
y2
 2y3  x
 2y  y2  x  y2  y 2 

dx
dx
du
dy 1 du
dy
y2
 3y2

uygulanmalıdır.

dx
dx 3 dx
dx
y2
1 du
  2u  x
3 dx

u  y3 değişken
du
 6u  3x elde edilir. Buradan;
dx
 p x dx 
p x dx
ue 
  e
 q  x   dx  c 



 6dx
6dx
u  e     e   3x  dx  c 


27
dönüşümü
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
1
1
1
1

u  e6 x    6x  1 e6x  c   u   6x  1  c  e6x  y3  x   c  e 6x
2
12
12
12

6.3
elde edilir.
Misal:
dy
5
 5y   x  y3
dx
2
hesaplayınız.
halinde verilen Bernoulli diferansiyel denklemin genel çözümünü
Çözüm: Denklemin her iki tarafı y 3 ile çarpıldığında;
y 3 
dy
5
 5y  y 3   x  y3  y 3
dx
2

y 3 
dönüşümü uygulanmalıdır. Buradan;
dy
5
 5y 2   x
dx
2
du
dy
 2y 3
dx
dx

u  y 2

y 3
değişken
dy
1 du

dx
2 dx
du
1 du
5
 10u  5x
 5u   x 
elde edilir. Bu denklem birinci mertebeden lineer
dx
2 dx
2
diferansiyel denklem olduğundan, çözümü doğrudan yazılabilir.

 p x dx 
p x dx
ue 
  e
 q  x   dx  c 



u  e10x    e10x  5x  dx  c 


u  e10x 1/ 2e10x x  1/ 20e10x  c 
u

 10dx 
10dx
ue 
  e
 5x  dx  c 


1
1
1 1
1
x   c  e10x  2  x   c  e 10 x sonucu elde edilir.
y
2
20
2
20
6.4
Misal:
 x  y   dx   2  x  y  dy  0
2
diferansiyel denklemini çözünüz.
Çözüm: ilk önce Bernoulli şekline çevirmek gereklidir.
 x  y2   dx   2xy  dy  0
y 
1
y

2y 2x
y  y 

1 2
1
y 
2x
2
1
1
 1 
u    u  
2
2
 2x 

y 
y
1
  y 1
2x
2


 x  y2    2xy y  0
u  y2 
1
u    u  1
x
 p x dx 
p x dx
ue 
  e
 q  x   dx  c 



y  y 

u  2  y  y

y 
1
1
y  y   y  y 1
2x
2

1
y  y  u
2
 1
   x  dx   ln  x 

ue
ln x 
28
  e

 ln x 
  1  dx  c 

x
y2

2xy 2xy
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 1

u  x        1  dx  c  
 x

y2  x    ln  x   c
u  x    ln  x   c 
olduğu görülür.
6.5
2
Misal:
dy 1
  y   y3 Bernoulli diferansiyel denkleminin genel çözümünü hesaplayınız.
dx x
dy 1
dy 1
2  y 3    y 3  y   y 3  y3
  y   y3

dx x
dx x
du
dy 1
dy
du
dy
2  y 3    y 2  1
 2  y 3 

 2  y 3 
u  y 2



dx
dx x
dx
dx
dx
  p x dx 
p
x

dx
du 1
du 1
 
   u  1
 u 1 

u x  e
  e
 q  x   dx  c 


dx x
dx x

1
1
 dx 
dx

 ln x
ln x
u  x   e  x    e  x  1  dx  c  
u  x   e      e    1  dx  c 





1  x2
1 
x c

u  x      c 
u  x     x  1  dx  c
u x  



x 2
x
2 x

2
y2 
1
u
6.6
2  y

y2 
1
x c

2 x
Genel çözümdür.
Misal:
2
 2x   dx  2y  dy  0 diferansiyel denkleminin genel çözümünü hesaplayınız.
Çözüm: Denklemi her iki tarafı dx e bölündüğünde,
2  y
2
 2x  
dy
dx
dy
0
 2y 
 0   2  y2  2x   2y 
dx
dx
dx
dy y
1 y x dy
dy y
1 x
1
1 
dy 
0 
   1  x  
   
 2  y2  2x  2y    0    
y 2 y dx
dx 2
dx 2
y y
y
2y 
dx 
y
dy 1
du
dy
dy 1 du
y
dy
 y    1  x   y 1  y  y   y2   1  x   u  y2 
 2y
 
 y
dx 2
dx
dx
dx 2 dx
2
dx
 p x dx 
p x dx
1 du 1
du
  u   1  x  
 u  2 1  x   u  x   e 
  e
 q  x   dx  c 


2 dx 2
dx

 1dx
1dx
u  x   e      e   2 1  x   dx  c   u  x   e x   2 e x  1  x   dx  c   d  u  v   v  du  u  dv




 v  du   d  u  v    u  dv
kuralı uygulanabilir. v  1  x  ve u  ex olarak seçildiğinde;
 1  x   e  1  x   e   e
x
x
x
1 
 1  x   e  1  x   e
x
29
x
 ex  ex  x  ex  ex  x  ex olduğu görülür.
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Bu değerler yerine yazıldığında;
u  x   e x   2  x  ex   c  2x  c  e x  y2  c  e x  2x şeklinde genel çözüm elde edilir.
6.7
2  x
Misal:
3
 y4   dx  x  y3  dy  0 diferansiyel denkleminin genel çözümünü hesaplayınız.
Çözüm: 2  x 3  y4  x  y3 
dy
dy
dy
y4
2  x 3
 0  x  y3   y4  2  x 3 


dx
dx
dx x  y3 x  y3
dy 1
dy 1
dy 1
  y  2  x 2  y 3  y3    y3  y  2  x 2  y3  y 3  y3    y4  2  x 2  u  y4
dx x
dx x
dx x
du 4
1 du
dy
du
4
dy
  u  8  x 2  p  x    , q  x   8  x 2
 y3 
 4  y3 
 

dx x
4 dx
dx
dx
x
dx
1
1
  4 dx

 p x dx 
p x dx
 4 dx 
u x  e 
  e
 q  x   dx  c   u  x   e x     e x  8  x 2   dx  c 




u x  e
ln x 
8
  
  e
 8  x 2   dx  c   u  x   x 4     8  x 2   dx  c  u  x   x 4    c 




x

ln x 4
4
y4  8  x 3  c  x 4 şeklinde genel çözüm elde edilir.
7. Riccati Diferansiyel Denklemi
dy
 a  x   y2  b  x   y  c  x 
dx
(7.1)
şeklindeki denklemlere Riccati denklemi denir ve a  x   0 olduğu zaman çözümü aşağıdaki
gibi 1. mertebeden lineer diferansiyel denklem gibi olur.
dy
 b x  y  c x 
dx
dy
 b x  y  c x
dx
Denklem (7.1) de y  y1 bir özel çözüm olmak üzere;
y  y1 
1
u
(7.2)
dönüşümü yapılmalıdır. y  y1 bir özel çözüm olduğundan denklem (7.1) de yerine
yazıldığında;
y1  a  x   y12  b  x   y1  c  x 
(7.3)
olur. Denklem (7.2) den dolayı x e göre türev alındığında;
30
y  y1 
u
olur.
u2
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
y  y1 
y1 
y
1
1
olduğundan y2  y12  2 1  2 yazılabilir. Denklem (7.3) de yerine yazıldığında;
u u
u
u
y
1
1


 a  x    y12  2 1  2   b  x    y1    c  x 
2
u
u u 
u


(7.4)
y1 yerine denklem (7.3) kullanıldığında;
a  x   y12  b  x   y1  c  x  
u
y
1
1


 a  x    y12  2 1  2   b  x    y1    c  x 
2
u
u u 
u


(7.5)
elde edilir.
a  x   y12  b  x   y1 
u
y
1
1


 a  x    y12  2 1  2   b  x    y1  
2
u
u u 
u


(7.6)
her taraf u 2 ile çarpıldığında;
y
1
1


a  x   y12  u 2  b  x   y1  u 2  u  a  x    y12  2 1  2   u 2  b  x    y1    u 2
u u 
u


haline gelir. Gerekli sadeleştirmeler yapıldığında;
a  x   y12  u 2  b  x   y1  u 2  u  a  x   y12  u 2  2  a  x   y1  u  a  x   b  x   y1  u 2  b  x   u
u  2  a  x   y1  u  a  x   b  x   u  0
veya;

u  2  a  x   y1  b  x   u  a  x   0
u  2  a  x   y1  b  x   u  a  x 
(7.7)
elde edilir. Bu da 1. mertebeden lineer diferansiyel denklemdir. çözümü elde edildiğinde,
denklem (7.2) den dolayı u yerine;
1
 y  y1
u
7.1

u
1
yazılarak genel çözüm elde edilmiş olur.
y  y1
Misal:
dy
 y2  y  2 Riccati diferansiyel denkleminin genel çözümünü bulunuz.
dx
Çözüm:
y1  1 bu denklemin birer özel çözümüdür. Bunlardan birisini kullanarak
1
y  2
genel çözüm elde edilir.
Denklem (7.1) den dolayı
u
y1  2
ve
dy
 a  x   y2  b  x   y  c  x 

dx
denklem (7.7) de kullanıldığında;
a  x   1, b  x   1, c  x   2 olduğu görülür. Bu değerler,
31
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
u  2  a  x   y1  b  x   u  a  x 

u  2  1  2  1  u  1
 p x dx 
p x dx
u x  e 
  e
 q  x   dx  c 



u  x   e3x    e3x   1  dx  c 


 1

u  x   e 3x    e3x  c 
 3

y 2
1
1
u  x     c  e3x
3

y  y1 
1
u

y  1 
1
u
u  2  a  x   y1  b  x   u  a  x 

u  2  1   1  1  u  1
 p x dx 
p x dx
u x  e 
  e
 q  x   dx  c 



u  x   e3x    e3x   1  dx  c 


1

u  x   e3x   e 3x  c 
3

y  1 
7.2
1
1
 c  e3x
3
u  3  u  1
şeklinde genel çözüm elde edilir. Aynı işlemler y1  1 alınarak da
1
  c  e 3x
3
hesaplanabilir.




u  3  u  1
1
u  x    c  e3x
3
şeklinde genel çözüm elde edilir
Misal:
dy
2
 y2  2 Riccati diferansiyel denkleminin çözümünü hesaplayınız.
dx
x
Çözüm:
dy
dy
c
2
2
y1 
 1  y2  0  y  2
 y2  2


bu denklemin bir
dx
dx
x
x
x
özel çözümüdür. Bunlardan birisini kullanarak genel çözüm elde edilir.
Denklem (7.1) den dolayı;
c1,2  1,2
dy
2
 y2  2
dx
x


c c2
2
 2 2
2
x
x
x

c2  c  2  0

y
2 1

x u

2 
u  2   1     0  u  1 
x 

u 
4
u 1
x
olur. Bu değerlerden birisi kullanıldığında; y1 
2
x
Denklem (7.7) den dolayı değerler yerine yazıldığında;
u  2  a  x   y1  b  x   u  a  x 
u x  e 
 p x dx
p x dx
   e
 q  x   dx  c 



4
 4

  x dx     x dx
u x  e
  e
 1  dx  c 


32
olur.
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
u  x   x 4    x 4 dx  c 


 x 3

u  x   x 4  
 c
 3


x
u  x     cx 4
3
 x  3cx 4
u x 
3
y
2 1

x u
y
2
3

x x  3cx 4
olduğundan u değeri yerine yazıldığında;
y

1  2Cx 3
,
x  1  Cx 3 
 C  3c 
Sağlaması yapıldı ve doğru olduğu görüldü. Aynı işlemler y1  
hesaplanabilir.
y
1 1
 olur. Denklem (7.7) den dolayı değerler yerine yazıldığında;
x u

 1 
u  2   1      0  u  1
 x 

u  2  a  x   y1  b  x   u  a  x 

 p x dx 
p x dx
u x  e 
  e
 q  x   dx  c 


u x  e
u  x   x 2    x 2 dx  c 


1
3x 2
 3
u  x  x  3c

1
özel çözümü alınarak da
x
2
  dx
x

 x3

u  x   x 2    c 
3

y
1 1

x u
3
3
3x 2
1 3x   x  3c 
y 3
 
x  3c x
x  x 3  3c 

u 
2
u 1
x
   2 dx

   e  x   1  dx  c 



u x 
x c

3 x2
olduğundan u değeri yerine yazıldığında;

y
2x 3  3c
x  x 3  3c 
elde edilir. Bu denklem de çözümü sağlamaktadır.
7.3
Misal:
dy
 y2  x  y  1 Riccati diferansiyel denkleminde, y1  x özel çözümü olduğuna göre, genel
dx
çözümünü hesaplayınız.
Çözüm: y  x alındığında, y  y2  xy  1  x 2  x  x  1  1 çözümü sağladığı görülmektedir.
u  2  a  x   y1  b  x   u  a  x 

u  2  1  x  x   u  1
 p x dx 
p x dx
u x  e 
  e
 q  x   dx  c 


33

u  x  u  1
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
u x  e 
 xdx
ax
e dx 
2
u x  e
y  y1 

1
2
2
x
2
xdx
   e    1  dx  c 


  erf

ax

1  x
1 2
x
2
x2
2
x


    e 2  dx  c 


2

1 
  erf   x 
2 
1

dx 
2
1

2


1  
  erf   x  

2  
1

 
c
 2

1



2


1
olduğundan,
u
1
yx
e
7.4
e

a
u x  e



2
x
2


1  
  erf   x  

2  
1

 
c
 2

1



2


Misal:
2
 2  x  y  y2   dx  dy  0 diferansiyel denkleminde y1  x özel çözümü bilindiğine göre
genel çözümü çözümü hesaplayınız.
dy
 1  y2   2  x   y  1  x 2   1  x 2  2  x  x  1  x 2 çözümü
dx
1
1
sağladığı görülmektedir. y  y1   y  x  . Bulunması gereken u fonksiyonudur.
u
u
Çözüm: y  x
alındığında,
u  2  a  x   y1  b  x   u  a  x 
 du    1  dx  c

u  2  1  x  2  x   u  1
 u  x  c . Buradan genel çözüm: y  x 

du
 1
dx
1
1
 yx
u
cx
Şeklinde hesaplanır.
7.5
Problem:
dy
2
 1   y  x  1 , y1  x  1 Riccati diferansiyel denkleminin verilen özel çözümü için genel
dx
çözümünü hesaplayınız.
Çözüm:
dy
dy
2
 1   y  x  1 
 1   y2  x  y  y  x  y  x 2  x  y  x  1
dx
dx
34
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
dy
dy
 1  y2  x  y  y  x  y  x 2  x  y  x  1 
 1  y2  2   x  y  1  y   2  x  x 2 
dx
dx
7.6
Problem:
dy
 1  x   y2   2  x  1  y x, y1  1 Riccati diferansiyel denkleminin verilen özel çözümü için
dx
genel çözümünü hesaplayınız.
Çözüm:
7.7
dy
 1  x   y2   2  x  1  y x, y1  1  a  x   1  x  , b  x    2  x  1 , c  x   x, y1  1
dx
Problem:
dy
1
 x 2  y2  x  y 1, y1  Riccati diferansiyel denkleminin verilen özel çözümü için genel
dx
x
çözümünü hesaplayınız.
x2 
Çözüm: x 2 
7.8
dy
1
1
 x 2  y2  x  y 1, y1   a  x   x 2 , b  x   x, c  x   1, y1 
dx
x
x
Problem:
dy
y
1  x   dx
3
2
 x 2  y 2  x, y1  x 2 Riccati diferansiyel denkleminin verilen özel çözümü için
genel çözümünü hesaplayınız.
Çözüm: 1  x 3  
dy
dy
1
x2
2x
2
 y2  x 2  y 2  x 

y

 y
3
3
dx 1  x
1 x
1  x3
dx
8. Clairaut Diferansiyel Denklemi
y  x
dy
dy
f( )
dx
dx
(8.1)
şeklindeki diferansiyel denklemlere Clairaut Denklemi denir. Denklem (8.1) in, x e göre
türevi alınıp tekrar düzenlendiğinde;
 x  f (dy / dx)
d2y
0
dx 2
(8.2)
elde edilir. Çözümü:
y  c  x  f (c)
(8.3)
şeklindedir.
8.1
Misal:
2
dy
 dy 
y  x   2    Clairaut diferansiyel denkleminin çözümünü hesaplayınız.
dx
 dx 
35
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Çözüm: denklemde
y  c  x  2  c2
8.2
dy
 c yazılarak genel çözüm hesaplanır.
dx
şeklindedir.
Misal:
y  x  y 
a2
Clairaut diferansiyel denkleminin çözümünü hesaplayınız.
y
dy
 p olsun. Bu durumda;
dx
tarafın x e göre türevi alındığında;
Çözüm: denklemde

a 2  dp
p  p  x  2 
p  dx

y  xp
a2
 f  x, p 
p
olur.
Her

a 2  dp
Burada iki farklı durum karşımıza
x

0


p2  dx

dp
0
çıkmaktadır. 1. Durum:
olursa; p  C

olur.
Bu
değer
ilk
dx
a2
y  Cx 
denklemde yerine yazıldığında;
elde edilir. Bu genel çözümdür. Veya
C
2. Durum: x 

a2
0
p2
yazıldığında;
olursa; p2 
p y  x p  a
2
2
a2
x


 p  y
olur. Bu değer
2
 x  p  a
2

2 2
ilk denklemde

yerine

a2 2  a2
 y   x   a2 
x
 x

2
2
a2 2
a2 2
 y   2a 2 
 y  4a 4 
y2  4a 2x


elde edilir. Bu tekil (sadece bir
x
x
durum için geçerli, özel) bir çözümdür ve yukarıda (durum:1 de) elde edilen denklemdeki
C nin herhangi bir değeri için bu sonuç asla elde edilemez. Yani özel çözümdür. Halbuki
birinci merteden bir diferansiyel denklemde 1 tane sabit bulunmalıdır.
9. Tam Diferansiyel Denklemler (Exact Differential Equations)
Birinci mertebeden bir diferansiyel denklem f  x, y   c şeklinde tanımlı olsun. Türevi
alındığında;
df (x, y) 
f
f
 dx   dy  0
x
y
(9.1)
olur. Bu kısaca aşağıdaki gibi gösterilebilir.
M  x, y   dx  N  x, y   dy  0
(9.2)
veya
M  x, y   N  x, y  
dy
0
dx
haline gelir.
36
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
M N

y x
Şeklinde ve
(9.3)
ise buna tam diferansiyel denklem denir. Çözümü aşağıdaki gibidir:
f  x, y    M  x, y   dx  g  y 
(9.4)
dg  y 
f (x, y)  

M(x, y)  dx  
 N(x, y)


y
y 
dy
dg  y 

 N(x, y)    M(x, y)  dx 

dy
y 
olduğundan;
olur. Her iki tarafın integrali alındığında;



g  y     N(x, y)    M(x, y)  dx    dy hesaplanır. Bu değer denklem (9.4) de yerine


y


yazıldığında çözüm elde edilmiş olur. Veya benzer işlemler;
f  x, y    N  x, y   dx  g  x 
(9.5)
dg  x  
f (x, y)  

N(x,
y)

dy

 M(x, y)

x
x  
dx 
alınarak tekrarlanır.
f  x, y    N  x, y   dx  g  x 
9.1
Misal:
 2  x  y  dx   x  2  y   dy  0
şeklinde verilen diferansiyel denklemin genel çözümünü
hesaplayınız. Ayrıca y  0   0 başlangıç şartını kullanarak özel çözümünü hesaplayınız.
Çözüm 1: M  x, y   dx  N  x, y   dy  0 şeklinde bulunduğundan tam diferansiyel denklem
olup olmadığı test edilmelidir.
N
M
1 
 1 ve
x
y
M N

olduğundan tam diferansiyeldir.
y x
f  x, y    M  x, y   dx  g  y     2  x  y   dx  g  y   c
f  x, y    x 2  xy   g  y 
N(x, y) 
dg  y 
 2
x  xy  

y
dy
g  y    y2

f (x, y)
 N(x, y)
y

x  2y  x 
f  x, y   x 2  x  y  y2  c
olduğundan;
dg  y 

dy
dg  y 
 2y
dy
x 2  x  y  y2  c

olarak elde edilir.
Çözüm 2: Veya f  x, y    N  x, y   dy  g  x     x  2  y   dy  g  x   x  y  y 2  c
37
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
M(x, y) 
y
dg  x 

x  y  y2  

x
dx
dg  x 
 2x  y 
dx


M(x, y)  y 
dg  x 
 dx   2x  dx
dx
f  x, y   x  y  y2  g  x   c

dg  x 
 2x  y
dx

x  y  y2  x 2  c
g  x   x2
olarak aynı sonuç bulunur. y  0   0
başlangıç şartı uygulandığında, 0  0  02  02  c  c  0  x  y  y2  x 2  0 şeklinde özel
çözüm bulunur.
9.2
Misal:
 2  x  y   dx   2  x  y  dy  0
2
diferansiyel denkleminin tam diferansiyel olup olmadığını test
ediniz. Tam diferansiyel ise genel çözümünü hesaplayınız.
N
M
 2y
 2y ve
y
x
Çözümü:
M N

y x
ve
olduğundan
tam
diferansiyeldir.
f  x, y    M  x, y   dx  g  y     2  x  y 2   dx  g  y   c
f (x, y)
 N(x, y)
y
f  x, y    x 2  x  y2   g  y 
N(x, y) 
dg  y 
 2
x  xy 2  

y
dy
f  x, y   x 2  xy2  c
df (x, y) 

2xy  2xy 
olduğundan;
dg  y 
dy

dg  y 
0
dy
şeklindedir. Sağlama için;
f
f
 dx   dy  0
x
y
olmalıdır.
 2

2x  y2   dx   2xy   dy  0
x  xy2   dx   x 2  xy2   dy  0

olur. Bu da


x
y
diferansiyel denklemin kendisidir. Aynı problem diğer şekilde de çözülebilir.
f  x, y    N  x, y   dy  g  x     2xy   dy  g  x 
f (x, y)
 M(x, y)
x
2x  y 2  y2 
olduğundan;
dg  x 
dx
f  x, y   xy2  x 2  c

M(x, y) 

f  x, y   xy2  g  x 
olur.
dg  x 

xy 2  

x
dx
dg  x 
 2x
dx

g  x   x2
olduğu görülür. Elde edilen sonuçların ikisi de aynıdır.
38
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
9.3
x
2
Misal:
 y2   dx   2xy   dy  0 ile verilen diferansiyel denklemin genel çözümünü bulunuz.
Çözüm: M  x, y   dx  N  x, y   dy  0 şeklinde bulunduğundan tam diferansiyel denklem olup
olmadığı test edilmelidir.
M
N
 2y,
 2y
y
x
M N

olduğundan tam diferansiyeldir.
y x

f  x, y    M  x, y   dx  g  y     x 2  y 2   dx  g  y   c
f (x, y)
 N(x, y)
y
 x3

f  x, y     xy 2   g  y 
 3

N(x, y) 
dg  y 
  x3
2
  xy  
y  3
dy

2xy  2xy 

olduğundan;
dg  y 
dy

dg  y 
0
dy
x3
x2
c
2
f  x, y    xy  c

olarak elde edilir. Ayrıca 1. mertebeden
 y2 
3
3
x
homojen diferansiyel olup olmadığı da test edilebilir.
x
2
 y2   dx   2xy   dy  0 
dy
x 2  y2
 f  x, y   
dx
2xy
x
2
 y2   dx   2xy  
x 2  y2
f  x, y   
2xy

dy
0
dx

dy
x 2  y2

dx
2xy

t 2   x 2  y2 
t 2x 2  t 2 y2
f  tx, ty   
 2
2 tx  ty
t   2xy 
f  x, y   f  t  x, t  y  olduğundan 1. mertebeden homojen diferansiyel denklemdir ve y  u  x
dönüşümü ile de çözülebilir.
2
dy
du x   u  x 
ux

dx
dx 2x  u  x 
2
ux
du u 2  1

dx
2u

 2u 
1
 2
 du    dx
 3u  1 
x

x
ux
du u 2  1  2u 2

dx
2u

x
du 3u 2  1

dx
2u
1
1
ln  3u 2  1  ln    c
3
x
1
c
 3u2  1  ex

şeklinde yazıldığında;

 2u 
1
  3u2  1  du    x  dx  c
1
3
2
2
du x 2  x 2  u 2 x  1  u 


dx
2x 2  u
2x 2  u
 y2
 3 ec
3

1
 2
 
x
 x


 y 2  x 2  e3c
3

x2  x3

39
1
e3



ln 3u2 1
e
1
ln 
x
 ec
 y2  x 2  2 e3c 2
3
x  3 x
x2 
x

PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
3y 2  x 2 
C
x
olarak aynı sonuç elde edilir. Benzer işlemler
dx 2 x  y

dy x 2  y 2
ve
dx
dv
2 v  y2
vy

dy
dy  v  y 2  y2
 v2  1 
1
dy

dv

y
3 
 
 3v  v 
1

v
  y  dy     3v  v
2
dönüşümü yapılarak da hesaplanır.
x  vy


vy

y   v  3  v 
2

1
3
y
dv 3v  v 3
 2
dy
v 1
1
1
1

y
ln  y   1/ 2ln  3  v 2   1/ 3ln  v   1/ 6ln 3  v 2 

ln  y    ln  3  v 2  3  ln  v  3
ln  y    ln  3  v 2  2  ln  v  3  ln  3  v 2  6
1
ln  y    ln  3  v 2   ln  v  
3

1
v
1 

 y  dy    3v  v 2  3v  v 3  dv


 
1 
 dv  c
3v  v 3 
1
dv
2 v
 2
dy v  1

ln  y   ln v  3  v

2


1
3
1

1
 v  3  v 2  3



e
ln v 3 v 2


1
3
x 
x 2 
y3    3  2    1
y 
y 
y3   v  3  v 2   1
1
e
ln y 
 x  3y 2  x 2  
C
x   3y2  x 2   c
3y 2  x 2 


olur. Aynı denklem
y  
  1
2
x

y  y
y  p  x   y  q  x   yn yapısına uymalıdır.
Bernoulli olarak çözüldüğünde,
3
x
2
 y2  dx   2xy  dy  0
y
 x
dy  1 
   y  y     y  y 1
dx  2x 
 2
du
dy
 2y

dx
dx
1
y

dy
x 2  y2

dx
2xy
y

e
 x
dy  1 
   y     y 1
dx  2x 
 2
dy  1  2
x
 y  
dx  2x 
2
1 du  1 
x
  u   
2 dx  2x 
2
dy 1 du


dx 2 dx
 p  x  dx    x  dx  ln  x 

p x dx
e
ln x 
x
olduğu
yazıldığında;
 p x dx 
p x dx
u x  e 
  e
 q  x   dx  c 


olmalıdır. Yani;
40
u  y2
du  1 
   u  x
dx  x 
görülür.
Değerler
yerine
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
u
1 
 x   x   dx  c 

x 

u

1  x3
   c
x  3


y2 
x2 c

3 x
Üç farklı usulle elde edilen neticeler birbirinin aynıdır.
9.4
Misal:
 2xy  sec  x    dx   x
2
2
 2y   dy  0
ile verilen diferansiyel denklemin genel çözümünü
hesaplayınız.
Çözüm: M  x, y   dx  N  x, y   dy  0 şeklinde bulunduğundan tam diferansiyel denklem olup
olmadığı test edilmelidir.
M
N
 2x,
 2x 
y
x
M N

tam diferansiyeldir. f  x, y    M  x, y   dx  g  y   c
y x
f  x, y     2xy  sec2  x    dx  g  y   c 
f (x, y)
 N(x, y)
y

dg  y 
 2y
dy
g  y   y2
x2y 
9.5

sin  x 
 y2  c
cos  x 
N(x, y) 


sin  x  
f  x, y    x 2 y 
  g  y
cos  x  

sin  x   dg  y 
  2
x y 

y 
cos  x  
dy
f  x, y   x 2 y 

x 2  2y  x 2 
dg  y 
dy
sin  x 
 y2  c
cos  x 
şeklinde genel çözüm bulunur.
Misal:
1
2
2
  2  x  y   dx   2  x  y  cos  y    dy  0 diferansiyel denklemini çözünüz.
x

M  x, y   dx  N  x, y   dy  0 şeklinde bulunduğundan tam diferansiyel denklem olup olmadığı
test edilmelidir.
N 
M   1

2x 2 y  cos  y    4xy 

   2xy2   4xy ve
x x
y y  x

diferansiyeldir.
M N

y x
olduğundan
f

1

ln  x   x 2 y 2  g  y  

f  x, y      2  x  y 2   dx  g  y   f  x, y   ln  x   x 2 y2  g  y  

y

y
x


dg  y 
dg  y 
dg  y 
f
f N
 2x 2 y 
 2x 2 y  cos  y  
  cos  y 


olduğundan 2x 2 y 
y
dy
dy
dy
y y
41
tam
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 dg  y   cos  y  dy

g  y    sin  y   ln  x   x 2 y2  sin  y   c şeklinde genel çözüm
elde edilir.
9.6
3  x
Misal:
2
 6  x  y2   dx   6  x 2  y  4  y3   dy  0 diferansiyel denklemini çözünüz.
M  x, y   dx  N  x, y   dy  0 şeklinde bulunduğundan tam diferansiyel denklem olup olmadığı
test edilmelidir.
N 
M 
6  x 2  y  4  y3   12  x  y

  3  x 2  6  x  y 2   12  x  y ve
x x
y y
tam diferansiyeldir.
f  x, y     3  x 2  6  x  y 2   dx  g  y   f  x, y   x 3  3  x 2  y2  g  y  

M N

olduğundan
y x
f
 3
 x  3  x 2  y2  g  y  

y y
dg  y 
dg  y 
dg  y 
f N
f

 6  x2  y 
 6  x 2  y  4  y3 
 4  y3

olduğundan 6  x 2  y 
y
dy
dy
dy
y y
 dg  y   4  y
3
 dy 
g  y   y4  x 3  3  x 2  y2  y4  c şeklinde genel çözüm elde edilir.
10. İntegrasyon Çarpanı ile Tam Diferansiyel Hale Getirilebilen Denklemler
Birinci mertebeden bir diferansiyel denklem f  x, y   c şeklinde tanımlı olsun. Diferansiyeli
alındığında;
df (x, y) 
f
f
 dx   dy  0
x
y
(10.1)
olur ve kısaca aşağıdaki gibi gösterilebilir.
M  x, y   dx  N  x, y   dy  0
(10.2)
Tam diferansiyel denklem, denklem (9.3) ile gösterilen
M N
M N


şartını sağlıyordu.
y x
y x
olduğundan bu şart;
  x, y   M  x, y   dx    x, y   N  x, y   dy  0
(10.3)
denkleminde bulunan   x, y  integrasyon çarpanı ile sağlanmış olsun. Bu durumda tam
diferansiyellik şartı aşağıdaki gibi yazılabilir.
   M     N 

y
x
(10.4)
Bu şartın daha açık yazılmasıyla;
42
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
M
M
N

N



olur. Buradan; 
olur. Her iki tarafın   x, y 
M

N

M
N
y
y
x
y
x
x
y
x
ye bölünmesiyle;

1  
  M N
N
M 


  x
y  y x
(10.5)
olur Burada bir çok tür karşımıza çıkar. Bunlardan 6 adedi aşağıda verilmiştir.
  e
  d
Yukarıdaki denklem ile ilgili integrasyon çarpanını bulmak için aşağıda verilen Tablo 1 den
faydalanılabilir.
Tablo 1: İntegrasyon çarpanı ile ilgili hazır değerler
x
y
xy
xy
My  Nx
My  Nx
My  Nx
My  Nx
N
M
NM
yN  xM

  
x
y
M
y
x 2  y2
 N x   y2
yN  xM
M
y
 Nx 
2 x  N  y  M
Bu değerlerin nasıl hesaplandığı aşağıda verilmiştir.
10.1     x  integrasyon çarpanı sadece x e bağımlı olduğu durum:
Burada yapılan tüm çözümler Denklem (10.5) den yararlanarak hesaplanmaktadır.   x, y 
fonksiyonu sadece x e bağlı olduğunda;     x  şeklinde yazılabilir. Dolayısıyla

0
y
olacaktır. Bu değer yerine yazıldığında;
1  

M
 N
  x
y
 M N

 

y
x

M N

1 d y x

 p x
 dx
N
ln     p  x  dx

1 d M N
N


 dx y x
elde edilir. Böylece;
px dx
ln 
e    e

olur. Buradan;
1 d
 p x
 dx
  e



d
 p  x  dx
 
p x dx
Dikkat: işlemler sonucunda elde edilen   x  integrasyon çarpanı,   x, y  şeklinde çıkarsa
yukarıdaki denklem uygulanamaz ve aşağıdaki 2. yol izlenir.
Burada
p x 
My  Nx
N
ile tanımlıdır ve sadece x in fonksiyonu olmalıdır.
10.1.1 Misal:
43
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 x  y  1  dx   x 2  x  y   dy  0
şeklinde verilen
diferansiyel denklemin, ilk önce tam
diferansiyel olup olmadığını test ediniz ve tam diferansiyel değilse, integrasyon çarpanını
hesaplayıp, çözümünü yapınız.
N
M N
M
 2x  1
ve
olduğundan

 x ve
x
y x
y
Çözümü: ilk önce integrasyon çarpanı hesaplanmalıdır.
p x 
My  Nx
N

e
1
  dx
x

e

1
1
  xy  1  dx    x 2  xy   dy  0
x
x
N
M
1
 1 ve
x
y

f
f
 dx   dy  0
x
y

f  x, y   xy  ln  x   g  y 
dg  y 
xy
dy

f  x, y   xy  ln  x  

1
x
değildir.
olduğundan;
1

 y    dx   x  y   dy  0
x

olmalıdır.

1

 y    dx   x  y   dy  0
x

1

f  x, y     y   dx  g  y 
x


dg  y 
 y
dy
y2
c
2

olduğundan tam diferansiyeldir

f  x, y    M  x, y   dx  g  y 
 ln X 
M N

y x
f  x, y    M  x, y   dx  g  y 
x
diferansiyel
x   2x  y 
yx
1

  
2
x  xy
x y  x
x
p x dx
  e
df (x, y) 
tam
dg  y 
f (x, y)  

M(x, y)  dx  
 N(x, y)


y
y 
dy

g  y     y dy

g  y  
olduğundan;
y2
2
olduğundan, yerine yazıldığında;

xy  ln  x  
y2
c
2
olduğu görülür.
İntegrasyon çarpanı için 2.yol tercih edildiğinde;
p  y 
Nx  My
p  p  x, y 
M

 2x  y   x 
xy  1
xy
xy  1
p  y 

xy
xy  1
fonksiyonu hem x hem de y ye bağımlı olduğundan, integrasyon katsayısı
geçerli değildir.
Bernoulli denklemine uygun olup olmadığının test edilmesi için, Bernoulli denklemi şekline
dönüştürmek gereklidir.
44
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 xy  1  dx   x 2  xy   dy  0
 x  y   y  y 
1
x
y 

xy  1   x 2  xy  y  0

1
1
y
xy
x  x  y
x  x  y  y  xy  1

uygun değildir. Aşağıda tam diferansiyel
hali denendi ve onun da uygun olmadığı görüldü.
1

 y    dx   x  y   dy  0
x

 x  y
dy 1  xy

dx
x
1
dy

0
 y     x  y
x
dx


 x  y
dy 1
 y
dx x
 x  y

dy 1
 y
dx x
uygun olmadığı görülmektedir.
10.1.2 Misal:
Misal 6.4 te verilen
 x  y   dx   2xy  dy  0
2
diferansiyel denklemin tam diferansiyel olup
olmadığını test ediniz ve tam diferansiyel değilse, integrasyon çarpanını hesaplayıp,
çözümünü yapınız.
N
M
M N
 2y
 2y ve

ve
olduğundan
y
y x
x
Çözümü: ilk önce integrasyon çarpanı hesaplanmalıdır.
p x 
e
My  Nx
N
2ln X 
2y   2y  4y
2


  
2xy
2xy
x


1
x2
e

tam
 px dx

diferansiyel
e
değildir.
2
  dx
x

olduğundan;
1
1
 x  y2   dx  2   2xy   dy  0
2 
x
x

 1 y2 
 2y 
  2   dx     dy  0
 x 
x x 
haline gelir ve
M N
M   1 y2 
y
N   2y 
y

olduğundan tam diferansiyeldir
   2   2 2 ve

   2 2 
y x
y y  x x 
x
x x  x 
x
ve çözümü tam diferansiyel denklem gibi yapılır.
f  x, y    M  x, y   dx  g  y 
f  x, y   ln(x) 
y2
 g  y
x
 1 y2 
f  x, y      2  dx  g  y 
x x 


dg  y 
f (x, y)  

M(x, y)  dx  
 N(x, y)


y
y 
dy
f (x, y)  
y 2  dg  y 

ln(x)


 N(x, y)
y
y 
x 
dy
2y
 g  y   N(x, y) 
x
2y
2y
 g  y  
x
x

f (x, y)  2y  dg  y 
  
 N(x, y)
y
dy
x

g  y   0
45
olduğundan;
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
g  y  c
ln(x) 
ve
y2
f  x, y   ln(x)   g  y  olduğundan;
x
y2
c 0
x

y2   ln(x)  c  x  0
elde edilir.
10.1.3 Misal:
y

 2x    dx   xy  1  dy  0 diferansiyel denkleminin   (x) integrasyon çarpanını bularak
x

genel çözümünü elde ediniz.
Çözüm 1:
y

 2x    dx   xy  1  dy  0
x

p x 
My  Nx
N
p x dx
  e

e
My 

1
y
x

p x 
xy  1
1
  dx
x

e

1
x

Nx  y
1  xy
1  xy
1
p x  x 

xy  1
x
xy  1
 ln X 


1
x

olduğundan;
y
1
1 
y
1




  2x    dx    xy  1  dy  0
 2  2   dx   y    dy  0
x 
x
x 
x
x


1
M N
Nx  2


olduğundan tam diferansiyeldir.
x
y x
f
f
y
1


df (x, y) 
 dx   dy  0
olmalıdır. 
 2  2   dx   y    dy  0
x
y
x 
x


f  x, y    M  x, y   dx  g  y 
f  x, y   2x 

y
 g  y
x
1 dg  y 
1

 y

x
dy
x
dg  y 
y
dy
f  x, y    M  x, y   dx  g  y 

g  y    y  dy

g  y 
y2
2
olduğundan, yerine yazıldığında;
şeklinde genel çözüm elde edilir.
Çözüm 2:

y

 2x    dx   xy  1  dy  0
x

dy  du  x  u  dx

1
x2
f (x, y)  
y  dg  y 
 2x   
 N(x, y) olduğundan;
y
y 
x
dy
y y2
f  x, y   2x  
c
x 2
y  ux
My 
y

f  x, y     2  2  dx  g  y 
x 



p x  
dönüşümü uygulansın.
ux 

 2x 
  dx   x  u  x  1   du  x  u  dx   0
x 

46
1
x
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 2x  u   dx   x 2  u2  u   dx   x 3  u  x   du  0
 2x  u   dx   x 2  u  1   du  x  u  dx   0
 2x  x
2
 u 2   dx   x 3  u  x   du  0

Her taraf x e bölündüğünde (çünkü bütün
terimlerde x bulunmaktadır);
1
  2x  x 2  u 2   dx   x 3  u  x   du   0 
x
 2  x  u   dx   x
2
M 
N  2
  x  u  1  2  x  u
  2  x  u 2   2  x  u ve
x x
u u
diferansiyeldir.
 u  1  du  0
M N

u x

olduğundan
tam
 f  x, u     2  x  u 2  dx  g  u 
f  x, u    M  x, u   dx  g  u 
f  x, y   2  x 
2
x2 2
 u  g u
2
f (x, u)  
x 2 2  dg  u 

2

x

u 
 N(x, u)
u
u 
2
du


dg  u 
 1
du
dg  u 
 x2  u  1

du
x2
f  x, u   2  x   u 2  g  u 
2
x2  u 
dg  u 
 du  u 
x2
f  x, u   2  x   u 2  u 
2

2
x2  y  y
f  x, y   2  x     
2 x x
g  u   u

f  x, y   2  x 

y2 y
 c
2 x
olduğundan;
y  ux
u

y
x
genel çözümdür.
10.1.4 Misal:
2  x  y
2
 2  dx  2y  dy  0
diferansiyel
denkleminin
  (x)
integrasyon
çarpanını
hesaplayarak genel çözümünü elde ediniz.
Çözüm: İlk önce diferansiyel denklemin tam diferansiyel olup olmadığı test edilmelidir.
N 
M N
M 
  2y  0

  2  x  y2  2   2y ve

olduğundan tam diferansiyel
x x
y x
y y
p x dx
değildir. O halde integrasyon çarpanı bulunmalıdır. Eğer     x  ise   e
ve
p x 
p x 
  e
My  Nx
sadece x in fonksiyonu olmalıdır.
N
My  Nx
N
p x dx


 2  y 2  2x    2y 
y
x

2y
 e
1dx
p x 

2y  0
2y
1
şart
sağlandı.
 ex
ex   2  y2  2x  dx  ex  2ydy  0




x
x 2
x
x
 2e  e y  2xe  dx  2e y  dy  0
N 
M 
2ex y   2ex y 
2ex  ex y2  2xex   2ex y ve


y y
x x 
diferansiyeldir.
47
M N

y x
olduğundan
tam
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
f  x, y     2ex  ex y2  2xex   dx  g  y   f  x, y   2ex  ex y2  2ex  x  1  g  y 
f
 x
e   2x  y2   g  y  


y y 
2ex y 
dg  y  f N
f

olduğundan;
 2e x y 

y
dy
y y

dg  y 
dg  y 
d
g  y  c
 2ex y 
 0 
dy
dy
dy

g  y   c
f  x, y   ex   2x  y2   c  2  ex  x  e x  y2  c şeklinde genel çözüm elde edilir.
Aynı denklem Bernoulli ile önceki bölümlerde çözüldü.
10.1.5 Misal:
x
4
 x  y   dx   x  y3  x 2   dy  0 diferansiyel denkleminin genel çözümünü hesaplayınız.
M  x, y   dx  N  x, y   dy  0 şeklinde bulunduğundan tam diferansiyel denklem olup olmadığı
test edilmelidir.
N  2
M  4
M N
  x  x  y3   2  x  y3
  x  x  y   x ve


olduğundan
tam
x x
y y
y x
diferansiyel değildir. Tablo 1 den yararlanarak x e bağlı olup olmadığı test edilmelidir.
x 
My  Nx
N

x   2  x  y3 
x 2  x  y3

y3  x
 x   y3  x 

1
 x dx
 dx
1
ln x 1 
1

x
   e
e
e

x
x
x 1   x 4  x  y   dx  x 1   x  y3  x 2   dy  0   x 3  y   dx   x  y3   dy  0
f  x, y     x 3  y   dx  g  y   f  x, y  

x4
f
  x4
 x  y  g  y 

 x  y  g  y 

4
y y  4

dg  y 
dg  y 
dg  y  
f N
f 
  y3
 x  y3 


olduğundan x 
 x 

dy
dy
y y
y 
dy 
3
 dg  y    y  dy

g  y  
y4
x4
y4

xy
 c şeklinde genel çözüm elde edilir.
4
4
4
10.2     y  integrasyon çarpanı sadece y ye bağımlı olduğu durum:
  x, y  fonksiyonun sadece y ye bağlı olduğunda;     y  şeklinde yazılabilir. Dolayısıyla

 0 olacaktır. Bu değer yerine yazıldığında;
x
1  
  M N
M 

N
  x
y  y x

1 d N M
M


 dy x y
48

N M

1 d x y

 p  y
 dy
M
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
1 d
 p  y
 dy
elde edilir.
p ydy
ln 
e    e

  e

p ydy

d
 p  y  dy
 
p  y 
burada

Nx  My
M
ln     p  y  dy
ile tanımlıdır.
10.2.1 Misal:
y  dx   y2  x   dy  0 ile verilen diferansiyel denklemin, ilk önce   (y) integrasyon
çarpanını bulunuz ve daha sonra genel çözümünü elde ediniz
Çözüm: M  x, y   dx  N  x, y   dy  0 şeklinde bulunduğundan tam diferansiyel denklem olup
olmadığı test edilmelidir.
N  2
M 
M N
  y  x   1

  y   1 ve

olduğundan tam
x x
y x
y y
değildir. Tablo 1 den yararlanarak y e bağlı olup olmadığı test edilmelidir.
  y 
Nx  My
M
diferansiyel
 y dy
1  1
2
  dy 2ln y1   1

     e
e y e
y
y
y2
2

1
x
1
1
 y  dx  2   y2  x   dy  0   dx   1  2   dy  0
2  
y
y
y
 y 
1

f
 x
x
f  x, y       dx  g  y   f  x, y    g  y  

 g  y 

y y  y
y
y

dg  y 
f N
x dg  y 
x
f  x dg  y  
x
1

olduğundan  2 
1 2 
  2 
 1 2 

y
dy
y
y  y
dy 
y
dy
y y
 dg  y    1  dy

g  y   y  f  x, y  
x
 y  c şeklinde genel çözüm elde edilir.
y
10.3 Eğer M ve N aynı dereceden homojen fonksiyonlar ve x  M  y  N  0 ise,
integrasyon çarpanı  
1
şeklindedir.
xy
x  M  y  N  0 olmak üzere M  x, y   dx  N  x, y   dy  0 diferansiyel denkleminin integrasyon
çarpanı;  
1
şeklindedir. Çünkü; x  M  y  N  0
xy
  M  dx    N  dy  0

x
M
 dx  y  dy  0 
N

M
y
  olur.
N
x
 y
x      dx  y  dy  0
 x
y  dx  x  dy  0 diferansiyel denklemiyle aynıdır. Dolayısıyla bu denklemin bulunan
integrasyon çarpanı, önceki denklem için de geçerlidir.
49
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
y  dx  x  dy  0
    y  dx  x  dy   0

Tam diferansiyel şartını sağlaması için,
1
   y  dx  x  dy   0
xy
   M     N 
olmalıdır. Dolayısıyla;

y
x
1
 1
    dx     dy  0
 x
y

   N    1 
   M    1 
    0
     0 ve
x
x  y 
y
y  x 
   M     N 
tam diferansiyel

y
x
1
şartı sağlanmaktadır. Böylece integrasyon çarpanının  
olduğu görülür.
xy

Aşağıda verilen diferansiyel denklem bu türe bir misaldir.
10.3.1 Misal:
 xy   dx   x 2   dy  0
diferansiyel denklemin ilk önce tam diferansiyel olup olmadığını test
ediniz. Tam diferansiyel değil ise, integrasyon çarpanını bularak çözünüz.
Çözüm:
M
N
 x, ve
 2x 
y
x
x   xy   y   x 2   0 


x  M  y  N  0 şartı test edilmelidir.
x 2  y  x 2  y  0 şart sağlanıyor. Bu durumda integrasyon çarpanı
1
olduğundan, diferansiyel denklem;
xy
 x2 
 xy 
dx

  dy  0
 xy 
 
 xy 

M N

y x
dy
dx

c
y
x
c  eC



x
1  dx    dy  0
y
ln  y   ln  x   c
y  cx

ln y

e
x
 dy  dx
y
e
ln x 
 eC

dy dx

y
x
 y  eC  x
şeklinde genel çözüm bulunur.
10.3.2 Misal:
 xy   dx   x y   dy  0
2
2
şeklinde verilen diferansiyel denklemin, tam diferansiyel olup
olmadığını test ediniz ve tam diferansiyel değilse, integrasyon çarpanını hesaplayıp,
çözümünü yapınız.
N
M
 2xy ve
 2xy ve
x
y
M N

y x
olduğundan tam diferansiyel değildir.
x  M  y  N  0 şartı test edilmelidir.  x   xy2   y   x 2 y   0
1
  xy2   dx   x 2 y   dy   0
xy 

 y  dx   x   dy  0
50

yx
dy
0
dx
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
dy
1
    dx  c
y
x
1
1
 dy   dx 
y
x

C  ec
y  C x

ln  y   ln  x   c


e
ln y
e
ln x 
 ec
genel çözümdür.
10.3.3 Misal:
12x y   dx  12x   dy  0
2
3
diferansiyel denkleminin genel çözümünü hesaplayınız.
Çözüm:
N
M
 36x 2 ve
 12x 2 ve
x
y
M N

y x
olduğundan tam diferansiyel değildir
a) integrasyon çarpanı     x  olarak alındığında;
p x 
My  Nx
N
p x dx

  e

12x 2   36x 2 
12x
e
3

2
  dx
x

12x 2  1  3

12x  x
2

2
x
ln X2 
e

p  p  x  olduğundan geçerlidir.


1
1
12x 2 y   dx  2 12x 3   dy  0 
2 
x
x
12y   dx  12x   dy  0
12xy  12xy  c


24xy  c
b) integrasyon çarpanı     x, y  
1
1
 12x 2 y   dx 
 12x 3   dy  0
xy
xy
 12x  dx 
xy  C
12x  x
 dy
y


dx 

xy  C
1
xy
1
x2
olduğundan;

 12y dx   12x  dy  c
c 

C  
24 

olarak alındığında;
 12x 2 
12x   dx  
  dy  0 
 y 
x
 dy 
y

dy
dx

c
y
x
12x 2
12x  dx 
 dy
y
ln  y   ln  x   c
12x 2   y  dx  x  dy  0
df (x, y)  y  dx  x  dy  0 
Not: her iki çözümde de diferansiyel denklemin aynısı elde edilmiştir. Buradan farklı
integrasyon çarpanı kullanılsa bile çözümün değişmediği görülmektedir. Ayrıca, bir
diferansiyel denklemin, tam diferansiyel hale getirilmesi için farklı integrasyon
çarpanlarının olabildiği görülmektedir.
51
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
10.4 Eğer M ve N aynı dereceden homojen fonksiyonlar ve x  M  y  N  0 ise,
integrasyon çarpanı  
1
şeklindedir.
xM  yN
x  M  y  N  0 olmak üzere M  x, y   dx  N  x, y   dy  0 diferansiyel denkleminin integrasyon
1
şeklindedir. Homojen olma şartı; Eğer M(x, y) ve N(x, y) m.
xM  yN
mertebeden homojen ise M(x, y)   m  M(x, y) ve N(x, y)   m  N(x, y) olur. Homojen olma
şartından dolayı;
çarpanı;  
x
M
M
N
N
y
 mM ve x
y
 mN bağıntıları geçerlidir. Misal olarak;
x
y
x
y
x
x
2
 xy  y2   dx   x 2   dy  0 diferansiyel denkleminde görülebilir.
M
M
y
 x   2x  y   y   x  2y   2x 2  xy  xy  2y 2  2   x 2  xy  y 2   2  M
x
y
N
N
y
 x   2x   y  0  2   x 2   2  N Bu bağıntılar ispatlandığında, integrasyon çarpanı da
x
y
ispatlanmış olur. Çünkü integrasyon çarpanı alınan kabul üzerine uygulanmaktadır.
x
M
M
 dx 
 dy  0 olur
xM  yN
xM  yN
  x, y    M  x, y   dx    x, y   N  x, y   dy   0 
Tam diferansiyel şartını sağlaması için,
   M     N 

olacağından;
y
x
  

 
M
N
 
şartı sağlanmalıdır. Bu şartın daha açık yazılmasıyla;


y  xM  yN  x  xM  yN 
M

  xM  yN    xM  yN   M N   xM  yN     xM  yN   N
y
y
x
 x
2
2
 xM  yN 
 xM  yN 
veya
M

N

  xM  yN    xM  yN   M 
  xM  yN    xM  yN   N yazılabilir.
y
y
x
x
xM
M
M


N
N


 yN
 M  x  M  M  y  N  x  M 
 yN
 N  x  M   N  y  N 
y
y
y
y
x
x
x
x
xM
M
M
M
N
N
N


 yN
 Mx
 MN  My
 xM
 yN
 N  x  M   N  y  N 
y
y
y
y
x
x
x
x
52
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Mx
yN
M
M
M
N
N
N
M
N
 yN
 Mx
 MN  My
 xM
 yN
 MN  Nx
 Ny
y
y
y
y
x
x
x
x
M
N
N
M
 My
 xM
 Nx
y
y
x
x
Nx

 M
 N
M 
N 
N x
 y
 Mx 
 y


y 
y 
 x
 x
M
M
N
N
 yN
 xM
 My
x
y
x
y
N   m  M  M   m  N 
m   M  N   m   M  N  olduğu görülür. Böylece ispatlanmış olur.
Aşağıda verilen misal bu türdendir.
10.4.1 Misal:
x
2
 x  y  y2   dx   x 2   dy  0
ile
verilen
diferansiyel
denklemin
genel
çözümünü
hesaplayınız.
M
N
 x  2y, ve
 2x 
y
x
M N

y x
x  M  y  N  0 şartı test edilmelidir.
x   x 2  xy  y2   y   x 2   0
integrasyon
çarpanı


x 3  2  x 2  y  x  y2  0
şart
1
1
1
 3

2
2
2
x  M  y  N x  2x y  xy
x  x  y
sağlanıyor.
Bu
olduğundan
durumda
diferansiyel
denklem;
 x 2  xy  y2 


x2

dx

 dy  0


2 
2 
 x  x  y 
 x  x  y 




diferansiyel gibidir.
10.5 M  x, y   dx  N  x, y   dy  0
haline gelir ve tam diferansiyeldir. Çözümü tam
diferansiyel
denklemi
M  x, y   y  f1  x  y 
ve
N  x, y   x  f 2  x  y  şeklinde ifade edilebiliyor ve f1  x  y   f 2  x  y  ise, integrasyon
çarpanı  
1
şeklindedir.
xM  yN
Aşağıda bununla ilgili misali inceleyiniz.
10.5.1 Misal:
y   2xy  1  dx  x   2xy  1  x 3y3   dy  0 ile verilen diferansiyel denklemin genel çözümünü
hesaplayınız.
53
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
M  x, y   y  f1  x  y 
Çözüm:
M  x, y   y   2xy  1

ve
N  x, y   x   2xy  1  x 3y3 
N  x, y   x  f 2  x, y  ve  2xy  1   2xy  1  x 3y3   f1  x, y   f 2  x, y  şartı sağlandığından dolayı
integrasyon çarpanı,  

1
şeklinde alınabilir. Buradan,
xM  yN
1
1
1
1
  2 2
  4 4

2 2
4 4
2
2
4 3
2x y  xy  xy  2x y  x y
xy
x  M  y  N x   2xy  y   y   x  2x y  x y 
olduğu görülür. Bu ifade verilen diferansiyel denklem ile çarpıldığında,
1
1
  2xy  1 dx  3 4   2xy  1  x 3y3   0
xy
xy
1
1
 y   2xy  1 dx  4 4  x   2xy  1  x 3y3   0 
4
xy
xy
4
4 3
veya,
 2
 2
1 
1
1
 2xy
1 
1  2xy
1
x 3y 3 
 x 4 y3  x 4 y3  dx  x 3y4   x 3y4  x 3y4  x 3y4  dy  0   x 3y2  x 4 y3  dx   x 2 y3  x 3y 4  y  dy  0








elde edilir.
 2
1 
f (x, y)    3 2  4 3  dx  g  y  
x y x y 
f (x, y) 
f (x, y)  
f
N
y
1
1

 g  y 
2
x y 3  x 3y3 
2
1
1
 3 3  ln  y   C
2
xy xy
2
10.6 M  x, y   dx  N  x, y   dy  0 diferansiyel
 M N 
 y  x 


denkleminde
ifadesi
 M N 
 y  x   N  a  x   M  b  y  şeklinde ifade edilebiliyor ise, integrasyon çarpanı


 a x dx
 b y dy
şeklindedir.
e 
e 
Aşağıda verilen diferansiyel denklem bu türdendir.
10.6.1 Misal:
x  x  2y  1 dy  y  2x  y  1 dx  0 şeklinde verilen diferansiyel denklemin genel çözümünü
bulunuz.
M
N
 2x  2y  1,
 2x  2y  1
y
x
Çözüm: x  x  2y  1 dy  y  2x  y  1 dx  0

 N M 
 x  y   2x  2y  1   2x  2y  1 


 a x dx
 b y dy
4
b  y 

e 
e 
3y
 N M 
 x  y   4x  4y  4  x  y 


 4 ln x 
 4 ln y 
3
e
e 3

54


a x 
   xy 

4
3
4
3x
ve
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 xy 

4
3
4
 x  x  2y  1 dy   xy  3  y  2x  y  1 dx  0 denklemi tam diferansiyeldir. Çözümü tam

diferansiyel denklem gibidir.
10.6.2 Misal:

x
M  x, y   dx   sec2  y     dy  0 diferansiyel denkleminin tam diferansiyel olması için M  x, y 
y

M N

ifadesini hesaplayınız. Çözüm: tam diferansiyel olması için
olmalıdır. Denklemde
y x
N  x, y  bilindiğinden çözüme buradan başlamalıdır.
N  x, y  
1
x

2
cos  y  y

f  x, y    N  x, y   dy  g  x 
f  x, y  
sin  y 
 x ln  y   g  x 
cos  y 
N 
1
x
1
 

2
x  cos  y  y 
y


sin 2  y  
f (x, y)
 1
  M  x, y  dx 

y
cos2  y  y  
sin 2  y 
 
1
x

M  x, y  dx 
 1
 cos2  y  y
y  
cos2  y 
sin  y 
 M  x, y  dx  cos  y   x ln  y   tan  y 
fonksiyonunun, f  x, y  
df (x, y) 
M
1

y
y

1
x
f  x, y    
  dy  g  x 
2
 cos  y  y 
olduğu görülür. Ayrıca
f (x, y)
1
x
 N  x, y  

2
y
cos  y  y


f (x, y)
 N  x, y 
y
olduğundan;

f (x, y)   sin  y 

  M  x, y  dx 

y
y  cos  y 


sin 2  y  
1
x


1

  M  x, y  dx 

cos2  y  y
cos2  y  y  

sin 2  y 
 
1
x

M  x, y  dx 
 1
 cos2  y  y
y  
cos2  y 
M  x, y    ln  y 
olur.
Buradan
sin  y 
 x  ln  y   c olduğu görülür. Sağlaması yapılabilir.
cos  y 
f
f
 dx   dy  0
x
y
olmalıdır.

f  x, y    sin  y 

 x  ln  y   

x
x  cos  y 

f  x, y 
  ln  y 
x

1
x
   dy  0
Diferansiyel denklem;  ln  y   dx  
2
 cos  y  y 

f  x, y 
1
x


2
y
cos  y  y
şeklindedir.
============================
55
f  x, y 
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
xM  y N  0
şartı
sağlanıyorsa
integrasyon

çarpanı
1
xy
alınabilir.
İspatı
aşağıdadır.
1  
  M N
 N
M 

  x
y  y x
 1
 M N
1
xy   2 M  2 N  

x y  y x
 xy

0
1
1  M N
 y M  x N   y  x



xM  yN M N


xy
y x

0
M N

y x
11. Lineer Diferansiyel Denklem Sistemleri (Linear Differential Equation
Systems)
Bazen birden fazla birinci mertebeden denklem sistemleri birbiri içerisinde denklem
sistemi şeklinde verilebilir. x ve y, t nin fonksiyonu olmak üzere iki denklem verilsin
dx
 a11  x  a12  y  0
dt
dy
 a 21  x  a 22  y  0
dt

 D  a11   x  a12  y  0

a 21  x   D  a 22   y  0
a12   x  0 
 D  a11 


 D  a 22   y  0
 a 21
D
Bu

d
alındığında 
dt
denklemler
dx
dt

matris
D  x  a11  x  a12  y  0
D  y  a 21  x  a 22  y  0
halinde
yazıldığında;
elde edilir. Bu denklemde x ve y değerleri her zaman
sıfır olmayacağından dolayı, matrisin determinantı sıfıra eşit olmalıdır.
 D  a11 

 a 21
  x  0 

 D  a 22   y  0 
a12

 D  a11 

 a 21

Buradan elde edilen kök değerleri ile çözüm elde edilir.

0
 D  a 22 
a12
0
0
 D  a11    D  a 22   a 21  a12  0
D2  a11  D  a 22  D  a11  a 22  a 21  a12  0 
D2   a11  a 22   D   a11  a 22  a 21  a12   0 Bu
teristik denklemin köklerinden genel çözüm elde edililir. Fakat x h  c1  e
y h  c3  e
r1t
 c4  e
r2 t
r1t
karakr t
 c2  e 2
ve
olacağından 4 adet keyfi sabit olur. Bunlardan 2 tanesi diğerinin
cinsinden yazılarak sadeleştirilir ve sadece 2 adet keyfi sabit kalır. Aynı çözümler matris
özelliklerinden faydalanılarak da yapılabilir. Bu denklem sistemlerinin anlaşılması için
aşağıda misaller verilmiştir.
56
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
11.1 Misal:
dx
 3 x  6  y  0
dt
dy
 3 x  3 y  0
dt
(1)
olarak verilen diferansiyel denklem sisteminin genel çözümünü
(2)
elde ediniz. Çözüm: D 
 D  3  x  6  y  0
d
operatörü kullanarak (1) ve (2) denklemi tekrar yazıldığında;
dt
(3)
ve
3  x   D  3  y  0 (4)
şekli elde edilir. Bu iki denklem
matris şeklinde yazıldığında;
6   x  0 
 D  3


 D  3  y  0
 3
eşitlendiğinde;
(5)
halini alır katsayılar matrisinin determinant sıfıra
6 
 D  3
  D  
(6)   D  3   D  3   18  0  D2  9  0 Buradan
0
 D  3
 3
Karakteristik denklemin köklerinin, r1,2  3  i olur. Buradan homojen kısmın çözümü önceki
bölümlerde verildiği gibi (tamamlayıcı çözüm) denklemin köklerinden dolayı;
r t
r t
r t
r t
x h  c1  e 1  c2  e 2 ve yh  c3  e 1  c4  e 2 şeklinde yazılmalıdır. Böylece;
x h  c1  cos  3  t   c2  sin  3  t 
(7)
ve
yh  c3  cos  3  t   c4  sin  3  t 
(8) olur.
Buradan görüldüğü gibi 4 adet farklı keyfi sabit gelmektedir. Halbuki   D  determinantı
 2x2 
boyutunda olduğundan sadece 2 adet katsayı bulunmalıdır. Bundan dolayı c3 vec4
katsayıları c1 vec2 cinsinden ifade edilmelidir. Bu amaçla x h  c1  cos  3  t   c2  sin  3  t  ve
yh  c3  cos  3  t   c4  sin  3  t  ile verilen çözümler ilk verilen (1) veya (2) denkleminde yerine
yazılıdığında çözüm elde edilir. Burada ilk olarak (1) denkleminde yerine yazıldı.
dx h
 3  x h  6  yh  0
dt
 3c1  sin  3  t   3c2  cos  3  t   3  c1  cos  3  t   c2  sin  3  t   6  c3  cos 3  t   c4  sin 3  t   0
 3  c1  3  c2  6  c4   sin  3  t 
 0 ve 3  c2  3  c1  6  c3   cos  3  t   0 olur. Veya,
c1  c2  2  c4  0 ve c2  c1  2  c3  0 olur. Buradan c 3 ve c 4 yerine; c3 
yazılmalıdır. Böylece yh  c3  cos  3  t   c4  sin  3  t  yerine;
57
c2  c1
2
c4 
  c1  c2 
2
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
c  c 
c2  c1
 cos  3  t   1 2  sin  3  t  olur. Aynı çözüm (2) denkleminde yerine yazılmasıyla
2
2
dy h
 3  x h  3  yh  0
da elde edilebilir.
dt
yh 
 3  c3  sin  3  t   3  c4  cos  3  t   3  c1  cos 3  t   c2  sin 3  t   3  c3  cos 3  t   c 4  sin 3  t   0
 3  c3  3  c2  3  c4   sin  3  t 
 0 ve 3  c4  3  c1  3  c3   cos  3  t   0 olur. Veya,
c3  c2  c4  0 ve c4  c1  c3  0 olur.
c3  c 4  c 2
c3  c4  c1
 2  c4  c1  c2  c4 
c3  c 4  c 2
c3  c4  c1
 2  c3  c2  c1  c3 
c2  c1
2
  c1  c2 
2
Görüldüğü gibi hangi denklem seçilirse seçilsin, sonuç değişmemektedir. Bu değerler
denkleminde yerine yazıldığında aynı sonuçlar elde
yh  c3  cos  3  t   c4  sin  3  t 
edilmektedir. Yani,
yh 
c  c 
c2  c1
 cos  3  t   1 2  sin  3  t  olur.
2
2
11.2 Misal:
dx
 3 x  6  y  0
(1)
dt
Denklem 11.1 de verilen
sistemin sağ tarafı sıfırdan
dy
3t
3 x 
 3  y  18  t  e
(2)
dt
farklı olduğunda çözümünü hesaplayınız. Bunun anlaşılması için “Cramer Kuralı” nı aşağıda
n adet cebirsel denklem verildiğinde
a11x1
a12 x 2
a1n x n

b1
a 21x1
a 22 x 2
a 2n x n

b2
a n1x1 a n2 x 2
a nn x n

bn
a11
Çözümü; x i 
a12
a1n
a
a 22
i
ile elde edilmektedir. Burada   21

a n1 a n2
a 2n
determinantıdır. Diğer x i 
i
ise aşağıdaki gibi tanımlıdır.

58
a nn
ile tanımlanan katsayılar
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
i 
a11
a1,i1
b1
a1,i 1
a1n
a 21
a 2,i1
b2
a 2,i 1
a 2n
a n1
a n,i 1
bn
a n,i 1
a nn
Böylece çözüm kolaylıkla elde edilir.
i. kol on
 D  3
Bu özellik 
 3
 D  3

 3
6   x  
0

denklem takımında uygulandığında;
   
3t 
 D  3  y  18  t  e 
6 
 D  3
0

x  t   
3t
18  t  e
6 

 D  3
 x  t   108  t  e3t
 t
x t  x


108  t  e 3t
x
D2  9
D
yazılarak homojen kısım elde edilir. Bu kısım daha önce hesaplanmıştı.
2
 9  x  0

D
2
 9   x  108  t  e3t
x h  c1  cos  3  t   c2  sin  3  t 
“Parametrelerin değişimi metodu” (Bakınız: 13.2) kullanıldığında tamamlayıcı kısım elde
edilir.
x p  v1  cos  3  t   v 2  sin  3  t 
v1  cos  3  t    v2  sin  3  t    0
v1   3  sin  3  t    v2  3  cos  3  t    108  t  e 3t
1
sin  3  t   
0
 v1   cos  3  t 

 


3t 
 v2   3  sin  3  t  3  cos  3  t   108  t  e 

3 t
 v1  
 36  sin  3  t   t  e 

olur. Bu ifadelerin integralinin alınmasıyla;
 
3 t 
 v2  
 36  cos  3  t   t  e 

1
 1
v1  36    t    e3t  cos  3  t   6  sin  3  t  te 3t
 6 18 
1
 1
v 2  6  cos  3  t   t  e 3t  36    t    e 3t  sin  3  t  olur. x p  v1  cos  3  t   v 2  sin  3  t  den dolayı
 6 18 
1


 1
x p   36    t    e 3t  cos  3  t   6  sin  3  t  te 3t   cos  3  t 
 6 18 


1


 1
  6  cos  3  t   t  e 3t  36    t    e 3t  sin  3  t    sin  3  t 
 6 18 


olur
Burada ifadelerin sadeleştirilmesiyle;
x p  2  e3t   3  t  1 olduğu görülür. Genel çözüm x  x h  x p şeklinde olduğundan;
59
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
x  c1  cos  3  t   c2  sin  3  t   2  e3t   3  t  1 şeklinde elde edilir.
Benzer işlemler y için de uygulandığında y nin genel çözümü bulunur.
0
 D  3

  y  t    D  3  18  t  e3t
y  t   
3t 
18  t  e 
 3


y  t  
d
18  t  e 3t   3  18  t  e 3t 
dt
 y  t   18  e3t  108  t  e3t
y t 
D
2
y  t 


 9  y  0
y

18  e3t  108  t  e3t
D2  9
D

2
 9   y  18  e3t  108  t  e 3t
yh  c3  cos  3  t   c4  sin  3  t 
yp  v 3  cos  3  t   v 4  sin  3  t  
v3  cos  3  t    v4  sin  3  t    0
v3   3  sin  3  t    v4  3  cos  3  t    18  e 3t  108  t  e 3t
1
sin  3  t   
0
 v3   cos  3  t 

 


3t
3t 
 v4   3  sin  3  t  3  cos  3  t   18  e  108  t  e 
3 t
 v3  
 6  e  1  6  t   sin  3  t  

 
 olur. Bu ifadelerin integralinin alınmasıyla;
3 t
 v4  
 6  e  1  6  t   cos  3  t  

 1 
1 
v 3  6     t  e3t cos  3  t   6    t   e 3t sin  3  t 
 6 
6 
1 
 1 
v 4  6    t  e3t cos  3  t   6     t   e 3t sin  3  t  olur. yp  v 3  cos  3  t   v 4  sin  3  t  den dolayı
6 
 6 
  1 

1 
y p  6     t  e 3t cos  3  t   6    t   e 3t sin  3  t    cos  3  t 
6 
  6 



1 
 1 
  6    t  e 3t cos  3  t   6     t   e 3t sin  3  t    sin  3  t 
6 
 6 


olur
Burada da ifadelerin sadeleştirilmesiyle;
yp  e3t 1  6  t  olduğu görülür. Genel çözüm y  y h  y p şeklinde olduğundan;
y  c3  cos  3  t   c4  sin  3  t   e3t 1  6  t  şeklinde elde edilir. c 3 ve c 4 keyfi sabitlerinin yok
edilmesi için soruda verilen (1) veya (2) denkleminin kullanılmasıyla yok edilir.
y
c  c 
c2  c1
 cos  3  t   1 2  sin  3  t   e3t 1  6  t  genel çözümdür.
2
2
60
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
11.3 Misal:
dx dy

 2  x  3 y
dt dt
dx dy
2 
 4  x  3 y
dt dt
(1)

(2)
 D  x  D  y  2  x  3  y  0
2  D  x  D  y  4  x  3 y  0
 D  x  D  y  2  x  3  y  0
2  D  x  D  y  4  x  3 y  0
 dx 
1 1  dt   2 3  x 
 
   
 
 2 1   dy   4 3   y 
 dt 
 dx 
1
1
1 1 1 1  dt   1 1  2 3 x 
 2 1   2 1   dy    2 1   4 3   y 

 
  
 
 
 dt 
d  x   2 0  x 
 
  
dt  y   0 3  y 
1 dx
x
2 dt
1 dy
y
3 dt

1

1
 dx   1
 dt   3
 
 dy    2
 dt   3
 2 0 d  x   2 0  2 0  x 
 0 3 dt  y    0 3  0 3  y 
  


 
 
dx
 2x  0
dt
dy
 3y  0
dt

r20
r 3 0
1
2

0


1
3   2 3  x 

 
1   4 3   y 
3 

0
d x  x 
   
1  dt  y   y 
3 
x  c1e 2t
y  c 2e3t
Bu neviden denklemlerin çözümü başlangıç veya sınır koşulları verildiği takdirde, sayısal
olarak da yapılabilmektedir. Sayısal çözümler her türden diferansiyel denkleme
uygulanabilir. Fakat her sayısal denklem, hepsini çözemez. Birçoğu sadece başlangıç
değer problemlerini çözebilmektedir (Euler metodu gibi). Sınır değer problemini çözenler
daha da önem kazanmaktadır.
11.4 Misal:
Diğer önemli bir misal de, aynı adada yaşayan kurt-tavşan hikâyesidir.
Tavşan ve kurtların, herhangi bir t anındaki sayısı sırasıyla, r ve f ile ifade edilsin.
Diferansiyel denklemi kurmak için aşağıdaki kabuller yapılacaktır.
1
Kurtların yokluğunda tavşanların zamana bağlı artma miktarı, mevcut tavşan
dr
 a  r,  a  0 f  0 iken 
sayısıyla orantılıdır. Bu durum:
dt
2
Tavşanların yokluğunda kurtların ölüp azalıp kaybolup gidecektir. Bunu da
df
 b  f ,  b  0 r  0 iken  şeklinde diferansiyel denklem ile ifade edebiliriz.
dt
61
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
3
Kurt ve tavşanların karşılaşma sayısı,
r  f 
çarpımı ile doğru orantılıdır. Böylece
Kurtların gelişme miktarı c   r  f   şeklinde ifade edilir iken tavşanların azalma miktarı
 d   r  f  ile ifade edilir. Buradaki c ve d pozitif sabitlerdir.
Bu kabuller doğrultusunda;
df
 b  f  d  r  f  f   b  d  r 
dt
Buradaki katsayılara bağlı olarak r ve f nin zamana
dr
 a  r  c  r  f  r  a  c  f 
dt
bağlı grafiği de değişmektedir. Herhangi bir r ve f değerine karşılık, faz diyagramı
çizilebilir. Çünkü;
Şekil 1: Tavşan-Kurt diyagramı
df
dt  df  dt  df   b  f  d  r  f
dr
a r  cr f
dt dr dr
dt
Bunu sayısal değerlerle daha iyi görebiliriz.
a  1.0 , b  1.0 , c  1.0 ve d  0.9 alındığında,  0  r  5 ve  0  f  5 bölgesinde r ve f ye
62
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
bağlı olarak
df
oranı her noktada hesaplanabilir. Bu durum aşağıda belirtilmiştir.
dr
df b  f  d  r  f f   b  d  r 


dr
a r  cr f
r  a  c  f 

df f   1  0.9  r 
elde edilir.

dr r  1.0  1.0  f 
Tavşan-Kurt değişim diyagramı Şekil 1 de verilmiştir. Bu grafiğin elde edilişi yukarıdaki
denklemde sayısal değerler kullanılarak hesaplanmıştır. (a, b, c ve d) değerlerine bağlı
olarak çok değişik grafikler elde edilmektedir.
Runga-kutta gibi sayısal metotlar kullanılarak Tavşan ve Kurtların zamana göre değişimi
de aşağıda verilmiştir.(Matlab ile yazılan “rabbit_fox.m” dosyası ile sonuçlar hesaplandı.)
The Lotka–Volterra predator–prey modeli ilk olarak Alfred J. Lotka tarafından 1910 yılında
ortaya atıldı.
a = 0.04, b = 0.0005, c = 0.2, d = 0.00005 değerleri ve r=1.1, f=0.98 için farklı grafikler
elde edildi.
dr df
c a

 0 olan nokta koordinatı (r,f )   ,  olan noktadır. Bu nokta başlangıç
dt dt
d b
değeri olarak alındığı takdirde kurt ve tavşanların zamana göre değişim grafiği eğimi
olmayan sabit bir çizgidir.
Kritik değer
Şekil 2 de r=3.44 ve f=0.88 başlangıç değerleri için t=20 ye kadar grafiği çizildi.
Şekil 2: Tavşan ve Kurt sayısının zamana göre değişimi
Birinci mertebeden diferansiyel denklemler başlangıç değer problemi (Initial Value
Problem, IVP) olduğu takdirde, en basit olan tanjant çizgi metodu (tangent line method)
veya Euler metodu (1768 yılında ilk olarak Euler tarafından ortaya atıldığı için)ile
63
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
sayısal çözümü de yapılabilir. Basit olarak y  m  x  n doğru denkleminden faydalanarak
yapılan çözüm gibi de algılanabilir. Bir fonksiyonun bir noktadaki değeri ve bu noktadaki
eğimi (1. metreden türevi bilindiği takdirde, bu noktadan küçük bir h kadar uzaktaki diğer
noktanın değeri;
yi1  yi  h 
dy
dx x i
(9.1)
denklemi ile hesaplanabilir. Buna Euler metodu denir. Burada önemli olan adım
büyüklüğünü (h=step size) küçük tutmak gerekir. x değeri arttıkça, hata miktarı da buna
bağlı olarak artar
11.5 Misal:
dy
1
 3  e t   y,
y  0  1
birinci mertebeden diferansiyel denklemin sayısal çözümünü
dt
2
t=0.4 e kadar h=0.1 aralıklarla Euler metodunu kullanarak hesaplayınız ve sonuçları
analitik çözüm ile kıyaslayınız.
Çözüm: verilen denklemin analitik çözümü; y  t   6  2e t  3  e
kullanıldığında;
y  0  1
ve
h  0.1
bilinmektedir.

t
2
t0
şeklindedir. Euler formülü
için
fonksiyonun
türevi
hesaplandığında;
dy
1
 3  e t   y
dt
2

dy
1
 3  e 0   1
dt t 0
2

dy
 3.5
dt t 0
olduğu görülür. Bu değerler Euler formülünde yerine yazıldığında;
yi1  yi  h 
dy
dx x i

y  0.1  y  0  0.1
dy
dt t 0

y  0.1  1   0.1   3.5
y  0.1  1.35 olarak elde edilir. ikinci adımda y  0.1  1.35 alınır ve türevi için
dy
1
 3  e t   y
dt
2

dy
1
 3  e 0.1   y  0.1 
dt t 0.1
2
dy
1
 3  e 0.1   1.35  3.4048
dt t 0.1
2

y  0.2  1.35   0.1   3.4048
y  0.2  1.3405

dy
1
 3  e 0.1   1.35
dt t 0.1
2
y  0.2   y  0.1  0.1
dy
dt t 0.1
olarak elde edilir. Bu işlemler bilgisayar programı yardımı ile kolayca hesaplananilir.
Yine bir sayısal çözüm tekniği olan, Diferansiyel Quadrature Metodu ile aynı problem
çözüldü. Sonuçların daha hassas olarak elde edildiği görüldü.
Bu metodun avantajı, her türden diferansiyel denkleme uygulanabilmesidir. Sınır değer
veya başlangıç değer problemi olması fark etmez. Ayrıca diferansiyel denklemin adi
64
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
diferansiyel veya doğrusal olmayan olması da çözümü etkilemez. Sadece doğrusal
olmayanlarda tekrar (iterasyon) sayısının artmasından dolayı hesaplama süresi artar.
Kısmî diferansiyel denklemlere de kolaylıkla uygulanabilmektedir. Fakat bunlarda boyut
sayısı arttığından dolayı hesaplama süresi de bunun orantılı olarak artmaktadır.
Matlab lisanında yazılan “euler.m” dosyası, Euler metodu ile yapılan çözüme bir misaldir.
Tablo 2: Euler metodu ile sayısal çözüm
Euler Metodu ile Çözüm
t
Gerçek Çözüm
h=0.1
h=0.01
h=0.0000001
0
1
1.0000000
1.00000000
1.00000000
0.1
1.33663689
1.3500000
1.33792643
1.33663690
0.2
1.64802624
1.6729837
1.65043617
1.64802626
0.3
1.93623963
1.97120763
1.93961834
1.93623966
0.4
2.20316765
2.24672907
2.20737940
2.20316769
0.5
2.45053633
2.50142462
2.45545969
2.45053638
Yine matlab lisanında yazılan “ode_dqm.m” dosyası, Diferansiyel Quadrature Metodu ile
yapılan çözüme bir misaldir.
Görüldüğü gibi t=0.5 için bile elde edilen sonuçlar oldukça yüksek uyumluluk
göstermektedir.
Tablo 3: Diferansiyel Quadrature metodu ile sayısal çözüm
t
Diferansiyel Quadrature Metodu ile
Çözüm
h=0.1
h=0.01
0.0
1.0000000
1.00000000
1
0.1
1.33663639
1.33663639
1.33663689
0.2
1.64802580
1.64802624
1.64802624
0.3
1.93623920
1.93623963
1.93623963
0.4
2.20316725
2.20316765
2.20316765
0.5
2.45053592
2.45053633
2.45053633
Matlab dilinde yazılan “euler.m” programı
faydalanarak başka problemler de çözülebilir.
%
%
Gerçek Çözüm
aşağıda
verilmiştir.
Bu
programdan
Numerical Solution of Differential Equations by Using Euler Method
y(0) = y0 (given initial value)
65
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
% h : Step size
% ts: Last point to be calculated
% ==========================================
clear all;
close all;
clc;
% ==========================================
ts = 0.5;
h = 0.1;
if ( h > ts)
sprintf('please enter correct value');
pause;
return;
end
t = (0:h:ts)';
n = size(t,1);
f = zeros(n,1);
g = zeros(n,1);
% ==========================================
% Initial condition is imposed here
% ==========================================
y = 1;
f(1) = y;
% ==========================================
for i=1:n-1,
dy = 3+exp(-t(i))-1/2*y;
f(i+1) =y+h*dy;
y=f(i+1);
end
for i=1:n,
g(i) = 6-2*exp(-t(i))-3*exp(-t(i)/2);
end
for i=1:(1/h*0.1):n,
display(sprintf('%8.4f %12.8f %12.8f',t(i),g(i),f(i)));
end
12. İkinci Mertebeden Homojen Diferansiyel Denklemler (Second Order
Homogeneous Differential Equations)
Şimdiye kadar incelenen diferansiyel denklemler birinci mertebeden idi. Mühendislikteki
birçok problem yüksek mertebendir. Hatta bir çoğu, 3. ve 4. merteben diferansiyel
denklem ile ifade edilebilmektedir. Homojen diferansiyel denklemin daha genel hali
Cauchy-Euler denklemidir ve aşağıdaki şekildedir.
d2y
dy
a x  2  bx   cy  0
dx
dx
2
Çözüm için; y  ekx değişken dönüşümü uygulanır. Bu durumda;
2
dy
dy
kx d y
 k  e kx olur.
ye ,
 k  e , 2  k 2  ekx değerleri elde edilir. Buradan da;
dx
dx
dx
66
kx
(12.1)
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Bu değerler yukarıdaki denklemde yerine yazıldığında;
a  x 2  k2  ekx  b  x  k  ekx  c  ekx  0   a  x 2  k 2  b  x  k  c   ekx  0
a  x   k   b  x   k  c  0 
2
k1,2 
2
k1,2
 b  x  b2  x 2  4  a  x 2  c
b  x  x  b2  4  a  c

 k1,2 
2  a  x2
2  a  x2
 b  b2  4  a  c
olarak elde edilir. Diğer bir dönüşüm için y  x k alınır. Buradan;
2a x
2
dy
k 1 d y
yx ,
 k  x , 2  k   k  1  x k 2 olur. Ayrıca;
dx
dx
k
dy
dy
dy
1
d2y
1
 k  xk   x 
 k  x k 1 
 k  x k Benzer şekilde;
 k   k  1  x k  2
2
dx
x
dx
dx
dx
x
x2 
d2y
 k   k  1  x k olur. Bu değerler asıl denklemde yerine yazıldığında;
2
dx
a  k   k  1  x k  b  k  x k  c  x k  0
Bu değerler asıl denklemde yerine yazılıdığında;
a  k   k  1  x k  b  k  x k  c  x k  0

a  k   k  1  b  k  c  0
olur.
Buradan
k
değerleri
hesaplanır.
İki farklı gerçek kök olması durumunda y fonksiyonunun çözümü aşağıdaki gibidir.
(12.2)
y  c1  x k1  c2  x k2
Köklerin tekrarlanması durumunda;
y  u  x   x  dönüşümü uygulanır.
dy
du
 u    x 1   x  ve
dx
dx
d2y
du
du
d 2u 
2
1
1

u





1

x




x




x

 x olur. Bu değerler (12.1) denkleminde
 
dx 2
dx
dx
dx 2
yerine yazıldığında;


du
du
d 2u
du  

a  x 2   u       1  x 2 
   x 1 
   x 1  2  x    b  x   u    x 1 
 x   c  y  0 (12.3)
dx
dx
dx
dx




d 2 u 1
du
du
a  x  2  x  2  a     x 1  b   x 1  b  u    x   a  u       1  x   c  y  0
dx
dx
dx

d2u
du
du  1


a  x  dx 2  2  a  dx    b  dx   x   b    x  a      1  x   u  c  y  0


67
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
y  c1  x k  c2  x k  ln  x 
Olur.
denkleminin türevleri alınıp denklem (12.1) de yerine
yazıldığında;
d2y
dy
a  x  2  1  2  k   x   k 2  y  0
dx
dx
(12.4)
2
elde edilir.
Fakat basit incelenmesi bakımından lisans seviyesinde verilenler aşağıdaki gibi genel
olarak sabit katsayılardan oluşmaktadır.
a
d2y
dy
 b  cy  0
2
dt
dt
y  y x
ise
a
a  y  b  y  c  y  0 ile gösterilebilir.

d2y
dy
 b  cy  0
2
dx
dx
a  y  b  y  c  y  0

olur. Denklemin çözümünü elde etmek için y  ert bir çözüm olsun. Bu değer, denklem
(12.3) de yerine yazıldığında;
y  ert

y  r  ert
a  y  b y  c y  0 
a  r
2
y  r 2  ert

a  r 2  ert  b  r  ert  c  ert  0
 b  r  c   ert  0
(12.5)
elde edilir. Denklemde ert  0 olduğundan;
a  r2  b  r  c  0
(12.6)
olmalıdır ve buna denklem (12.3) ün, “karakteristik denklemi” denir. Denklem (12.6) nın
kökleri r1 ve r2 olsun. Bu durumda çözüm;
y  c1  er1t  c2  er2 t
(12.7)
şeklindedir. Burada üç farklı kök hali vardır.
1
r1 
Kökler gerçek ve birbirinden farklı olması hali:
r2 
 b  b2  4  a  c
2a
2
Kökler gerçek ve birbirine eşit olması hali:
3
Köklerin sanal olması hali: r1  m  i  n ve r2  m  i  n
r1  r2  r  
Bu üç durumda homojen denklemin çözümü aşağıdaki gibidir.
1. Hal:
 b  b2  4  a  c
2a
r t
r t
y  c1  e 1  c2  e 2
68
b
2a
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
2. Hal:
y  c1  ert  c2  t  ert
3. Hal:
y  c1  e 1  c2  e 2  c1  e
r t
y  c1  emt  eint  c2  emt  eint
i
Euler denkleminden e
r t

min t
 c 2  e
min t
y  emt  c1  eint  c2  eint 
 cos   i  sin    faydalanarak tekrar yazıldığında;


y  emt  c1  cos  n  t   i  sin  n  t   c2  cos  n  t   i  sin  n  t 
y  emt   c1  c2   cos  n  t    c1  c2   i  sin  n  t 
c1  a  i  b, c2  a  i  b olduğunda ancak; C1   c1  c2 
ve
C2   c1  c2   i
alınabilir
ve
ifadede sanal terim bulunmaz. Böylece genel çözüm;
y  emt  C1  cos  n  t   C2  sin  n  t 
şeklindedir. Görüldüğü gibi diferansiyel denklem ikinci mertebeden olduğundan iki tane
sabit katsayı bulunmaktadır.
12.1 Misal:
2  x2 
d2y
dy
 3  x   y  0 diferansiyel denklemin genel çözümünü hesaplayınız.
2
dx
dx
Çözüm: ilk olarak y  x k ,
dy
d2y
 k  x k 1, 2  k   k  1  x k 2 çözümü denensin.
dx
dx
a  k   k  1  b  k  c  0  2  k   k  1  3  k  1  0  2  k2  2  k  3  k  1  0
2  k  k  1  0  2  k  k  1  0  k1,2
2
2
1  12  4  2  1 1 3
1


 1,
22
4
2
1
Ve buradan genel çözümün; y  c1  x k1  c2  x k2  y  c1  x 1  c2  x 2
olduğu görülür.
12.2 Misal:
d2y
dy
x  2  3 x   y  0
dx
dx
diferansiyel denklemin genel çözümünü hesaplayınız.
2
2
dy
k 1 d y
 k  x , 2  k   k  1  x k 2 çözümü denensin.
Çözüm: ilk olarak y  x ,
dx
dx
k
a  k   k  1  b  k  c  0  1  k   k  1  3  k  1  0  k2  2  k  1  0
k1,2  1,  1 olur Buradan genel çözümün; y  c1  x k  c2  x k  ln  x 
69
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
y  c1  x 1  c2  x 1  ln  x  olduğu görülür.
12.3 Misal:
d2y
dy
 5   6  y  0 ikinci mertebeden diferansiyel denklemin genel çözümünü hesaplayınız.
2
dx
dx
Çözüm:
r1 

r1 
 b  b2  4  a  c
2a
5  25  4  1  6 5  49 5  7



2
2
2
ve r2 
r2 
r2  5  r  6  0
 b  b2  4  a  c
2a
r1  1
olduğundan;
5  25  4  1  6 5  49 5  7


2
2
2
r x
r x
y  c1  e 1  c2  e 2

r2  6

y  c1  ex  c2  e6x
şeklinde genel çözüm elde edilir.
12.4 Misal:
d2y
dy
 6   9  y  0 ikinci mertebeden diferansiyel denklemin genel çözümünü hesaplayınız.
2
dt
dt
Çözüm:
r  6 r  9  0
2

r1 
6  36  4  1  9 6  0


2
2
r1  3
r1 
6  36  4  1  9 6  0

2
2

 b  b2  4  a  c
r1 
2a
r  r1  r2
r2  3 
Kökler tekrarlamalı olduğundan genel çözüm;
y  c1  ert  c2  t  ert 
y  c1  e3t  c2  t  e3t şeklindedir.
12.5 Misal:
d2y
dy
 2   2  y  0 ikinci mertebeden diferansiyel denklemin genel çözümünü hesaplayınız.
2
dt
dt
Çözüm:
r2  2  r  2  0

r1 
 b  b2  4  a  c
2a
70
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
r1 
2  4  4  1  2 2  4

2
2

r1 
2  2  i

2
r1  1  i
r2 
2  4  4  1  2 2  4

2
2

r2 
2  2  i

2
r2  1  i
Kökler sanal olduğundan;
r t
r t
y  c1  e 1  c2  e 2

y  c1  e
1i t
 c 2  e
1i t
veya y  e t  C1  cos  t   C2  sin  t  şeklinde
genel çözüm elde edilir. Sağlamasını yapmak için iki defa türevini alıp diferansiyel
denklemde yerine yazmak gerekir. Sonuç sıfır çıktığı takdirde çözümün doğru olduğu
anlaşılır.
dy
 e t  C1 cos  t   C2 sin  t    e  t  C1 sin  t   C2 cos  t  
dt
d2y
 e t  C1 cos  t   C2 sin  t    2e  t  C1 sin  t   C2 cos  t    e  t  C1 cos  t   C2 sin  t  
dt 2
d2y
dy
 2  2 y  0
2
dt
dt
e  t  C1 cos  t   C2 sin  t    2e  t  C1 sin  t   C2 cos  t    e  t  C1 cos  t   C2 sin  t  
2   e  t  C1 cos  t   C2 sin  t    e  t  C1 sin  t   C2 cos  t  
2  e  t  C1 cos  t   C2 sin  t    0
e  t  C1 cos  t   C2 sin  t    2  e  t  C1 sin  t   C2 cos  t    e  t  C1 cos  t   C2 sin  t  
 2  e  t  C1 cos  t   C2 sin  t    2  e  t  C1 sin  t   C2 cos  t  
 2  e  t  C1 cos  t   C2 sin  t    0
00 
çıktığından diferansiyel denklemi sağladığı görülmektedir.
başlangıç veya sınır değerleri verildiği takdirde özel çözüm elde edilir. Yani genel çözümde
verilen c1 ve c2 katsayıların yerini sabit sayılar alır.
12.6 Misal:
d 2 y dy

 2  y  0, y  0  1, y  0  1 şeklinde başlangıç şartları ile birlikte verilen ikinci
dt 2 dt
mertebeden diferansiyel denklemin özel çözümünü hesaplayınız.
Çözüm:
r1 
r2  r  2  0 
1  1  4  1  2 1  3

2
2
r1 

 b  b2  4  a  c
2a
r1 
2

2
r1  1
71
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
r2 
1  1  4  1  2 1  3

2
2

r1  
4
2
r2  2

Kökler gerçek ve birbirinden farklı olduğundan;
r t
r t
y  c1  e 1  c2  e 2
y  c1  e t  c2  e2t

şeklinde genel çözüm elde edilir. y  0  1 şartı genel çözümde yerine yazıldığında;
c1  e0  c2  e20  1 
c1  c2  1
çözümün türevi alınmalıdır.
dy
 c1  e t  2  c2  e2t
dt
3  c2  0
c2  0 

d 2 y dy

 2y  0
dt 2 dt

elde
ikinci
c1  e0  2  c2  e20  1
c1  1 
et  et  2  et  0

edilir.

şartın
uygulanması
için
genel
c1  2  c2  1
y  e t özel çözümdür.
00 

sonuç doğrudur.
13. İkinci Mertebeden Homojen olmayan Diferansiyel Denklemler (Second Order
Nonhomogeneous Differential Equations)
Şimdiye kadar incelenen ikinci mertebeden diferansiyel denklemler sıfıra eşitleniyordu.
d2 y
dy
a  2  b   c  y  gt
dt
dt
(13.1)
şeklindeki denklemlerin genel çözümleri 2 tane çözümün toplamı şeklindedir. y  y h  y p
Şimdiye kadar yapılan çözümler y  y h şeklinde idi. yani kısmî (veya tamamlayıcı)
çözümler  y p  yok idi.
13.1 Belirsiz Katsayılar Metodu ile Homojen Olmayan Diferansiyel Denklemin Çözümü
(Undetermined Coefficients Method)
Bu usulde y p  t  fonksiyonu, g  t  ye bağlı olarak aşağıda verilen tablodaki gibi kabul edilir.
(Not: Eğer fonksiyon x e bağlı ise y p  t  yerine y p  x  ve g  t  yerine g  x  yazılır.)
Diferansiyel denkleme bağlı olarak türevler alınır ve yerine yazılarak katsayılar hesaplanır.
Böylece y p  t  sayısal olarak elde edilir. y  y h  y p denkleminde yerine yazılarak genel
çözüm elde edilir.
Tablo 4: Belirsiz katsayılar metodunda, kısmî (tamamlayıcı) fonksiyonun
belirlenmesi
yp  t 
g t
72
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
A  ebt
a  ebt
A  cos  n  t 
a  cos  n  t   b  sin  n  t 
A  sin  n  t 
a  cos  n  t   b  sin  n  t 
A  cos  n  t   C  sin  n  t 
a  cos  n  t   b  sin  n  t 
A2  t 2
a 0  a1  t  a 2  t 2
A0  A 2  t 2
a 0  a1  t  a 2  t 2
A0  A1  t  A2  t 2
a 0  a1  t  a 2  t 2
a
A2  t 2  ebt
0
 a1  t  a 2  t 2   ebt
y p  t  çözümü, y h  t  de aynen bulunduğu takdirde t ile çarpım yapılır. yani yeni kısmî
yp  t  yp  t  şeklinde alınır. Burum devam ederse;
çözüm;
yp  t 2  yp  t 
alınır.
Böylece işlem devam eder.
13.1.1 Misal
d2y
dy
18
1
 4   12  y  3  e5t , y  0  , y  0   
2
dt
dt
7
7
denklemin özel çözümünü hesaplayınız.
başlangıç koşulları ile verilen diferansiyel
Çözüm:
İlk önce genel çözüm bilinmelidir. Daha sonra buradan özel çözüme geçilir.
Genel çözüm homojen ve kısmî çözümün toplamı olduğundan; y  y h  y p 
yh ve
yp hesaplanmalıdır.
d2y
dy
 4   12  y  0 denkleminden yh aşağıdaki gibi hesaplanır.
2
dt
dt
r 2  4  r  12  0

r1  2
r2 

r1,2 
b
b2  4  a  c
2a
4  16  4  1  12 4  8

2
2
4  16  4  1  12 4  8

2
2

r1 

r1  6
Kökler gerçek ve birbirinden farklı olduğundan homojen kısmın çözümü;
r t
r t
yh  c1  e 1  c2  e 2 
yh  c1  e2t  c2  e6t şeklinde genel çözüm elde edilir.
yh  c1  e2t  c2  e6t

dy p
dt
 5a  e
5t

d2yp

dt

2
g  t   3  e5t olduğundan dolayı
5t
d2 yp
dy p
 12  y p  3  e5t
 25a  e


25a  20a  12a   e5t  3  e5t

25a  e5t  4  5a  e5t  12  a  e5t  3  e5t 
dt
73
2
 4
dt
y p  a  e5t
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
3
7
y p  a  e5t
7  a  3

a
y  yh  yp

3
y  c1  e2t  c2  e6t   e5t
7

3
y p    e5t
7

şeklinde genel çözüm elde edilir.
denklemde başlangıç şartları yerine yazılarak özel çözüm elde edilir. y  0 
3
y  c1  e2t  c2  e6t   e5t
7
c1  c2  3

3
18
c1  e0  c2  e0   e0 
7
7
y  2c1  e2t  6c2  e6t 

1 15
2c1  6c2   
7 7

15 5t
e
7
2c1  6c2  2

2c1  e0  6c2  e0 

c1  3c2  1 
18
1
, y  0  
7
7
c1  c2 

Bu
18 3

7 7
15 0
1
e  
7
7
c1  2, c2  1
Bu değerler genel çözümde yerine yazıldığında, özel çözüm elde edilir.
3
y  2  e 2t  e6t   e5t
7
istenilen cevaptır.
13.1.2 Misal
d2y
dy
 4   12  y  sin  2  t 
2
dt
dt
diferansiyel denklemin genel çözümünü hesaplayınız.
Çözüm:
Bir önceki misalde homojen kısım, karakteristik denklemden çözüldüğünden
g  t   sin  2  t 
yh ; yh  c1  e2t  c2  e6t şeklindedir.
olduğundan dolayı;
yp  a  sin  2  t   b  cos  2  t 
dy p
dt
olmalıdır.
 2a  cos  2  t   2b  sin  2  t 

d2 yp

dt
d2 yp
dt 2
2
 4
dy p
dt
 12  y p  sin  2  t 
 4a  sin  2  t   4b  cos  2  t 
4a  sin  2  t   4b  cos  2  t   4  2a  cos  2  t   2b  sin  2  t   12  a  sin  2  t   b  cos  2  t   sin  2  t 
4a  8b  12  a   sin  2  t   sin 2  t 

8  b  16  a  1
16b  8a  0 

a
8  b  4  a  0
y  c1  e2t  c2  e6t 
1
1
 sin  2  t    cos  2  t 
20
40
1
1
, b
20
40

4b  8a  12b  cos  2  t   0

y  yh  yp
genel çözümdür.
Açıklama: Bu problemde yp  a  sin  2  t   b  cos  2  t  yerine yp  a  sin  2  t  kısmî çözüm olarak
dy p
alınsaydı, çözümün sağlamadığı görülürdü.
dt
74
 2a  cos  2  t 
d2 yp
dt 2
 4a  sin  2  t 
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
4a  sin  2  t   4  2a  cos  2  t   12  a  sin  2  t   sin  2  t 
4  a  12  a   sin  2  t   sin  2  t 

16  a  1
ayrıca
8  a  0 olur. Dolayısıyla a için
doğru bir değer hesaplanamaz.
13.1.3 Misal
d2
d
y  t   4  y  t   4  y  t   2  e2t
ikinci
2
dt
dt
denklemin genel çözümünü bulunuz.
r2  4  r  4  0

olduğundan
mertebeden
homojen
yh  c1  e2t  c2  t  e2t
olmayan
diferansiyel
g  t   2e2t
r1  r2  2

yp  a  e2t
olarak görünür. Fakat bu terim homojen kısımda

yh  c1  e2t  c2  t  e2t mevcuttur. Bu yüzden t ile çarpılarak alınır. y p  a  t  e2t ve tekrar
homojen çözümde böyle bir terim olup olmadığı kontrol edilir. yh  c1  e2t  c2  t  e2t
Bu terim de mevcuttur. Dolayısıyla tekrar t ile çarpılmalıdır.
dy p
dt
 2  a  t  e2t  2  a  t 2  e2t
d2 yp
dt
2
 4
dy p
dt

d2 yp
dt 2

yp  a  t 2  e2t
 2  a  e2t  8  a  t  e2t  4  a  t 2  e2t
 4  y p  2  e2t
2  a  e2t  8  a  t  e2t  4  a  t 2  e2t   4  2  a  e2t  2  a  t 2  e2t   4  a  t 2  e2t  2  e2t
2  a  e2t  8  a  t  e2t  4  a  t 2  e2t  8  a  e2t  8  a  t 2  e2t  4  a  t 2  e2t  2  e2t
2  a  e2t  8  a  t  e2t  4  a  t 2  e2t  8  a  e2t  8  a  t 2  e2t  4  a  t 2  e2t  2  e2t
2  a  e2t  2  e2t

a 1
y  c1  e2t  c2  t  e2t  t 2  e2t

y p  t 2  e2t olduğu görülür.
genel çözümdür.
13.1.4 Misal
d2
d
y  t   4  y  t   5  y  t   2  e2t  sin  t 
2
dt
dt
denklemin genel çözümünü bulunuz.
ikinci mertebeden homojen olmayan diferansiyel
r2  4  r  5  0
yh  e2t  c1  cos  t   c2  sin  t 
g  t   2  e2t  sin  t 

r1,2  2 i


İlk bakışta kısmî çözüm g  t  ye bağlı olarak;
75
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
yp  e2t  a  sin  t   b  cos  t 
şeklinde seçilir ve homojen kısımda benzer terimlerin
olup olmadığı kontrol edilir.

y h  e2t  c1  cos  t   e2t  c2  sin  t 
terim bulunmaktadır. Bu yüzden t ile çarpılmalıdır.
dy p
dt
d2 yp
dt 2
d2 yp
2


Benzer
yp  t  e2t  a  sin  t   b  cos  t 
 e2t  a  sin  t   b  cos  t   2  t  a  sin  t   2  t  b  cos  t   t  a  sin  t   t  b  cos  t 
4  a  sin  t   4  b  cos  t   2  a cos  t   2  b  sin  t   3 t  a  sin  t  
 e2t  

 3  t  bcos  t   4  t  a cos  t   4  t  b  sin  t 

 4
dy p
 5  y p  2  e2t  sin  t 
Hesaplanan
dt
dt
sadeleştirmeler yapıldığında;
2  b  e2t  sin  t   2  e2t  sin  t 
yp   t  e2t  cos  t 

değerler
yerine
yazılıp
gerekli
2  e2t  a  cos  t   b  sin  t   2  e2t  sin  t 
b  1


2  e2t  a  cos  t   0 
y  e2t  c1  cos  t   c2  sin  t   t  e2t  cos  t 
a0
Genel çözümdür.
13.1.5 Misal
dy
 2  y  x3
birinci mertebeden homojen olmayan diferansiyel denklemin genel
dx
çözümünü bulunuz.
x
Çözüm: Genel çözüm homojen ve kısmî çözümün toplamı olduğundan;
y  yh  yp

yh ve yp hesaplanmalıdır.
Homojen çözüm;
x
dy
 2y  0
dx

x
dy
 2y  0
dx
diferansiyel denkleminden elde edilir.
x
dy
 2y 
dx
dy dx

2y x
 1
ln  y 2 
 
 
1
ln  y   ln  x   C 
2
e
yp  a 0  a1x  a 2x 2  a 3x 3

e
ln  x 
dy p
dx
 eC

 a1  2a 2 x  3a 3x 2
x  a1  2a 2x  3a 3x 2   2  a 0  a1x  a 2x 2  a 3x 3   x 3
a 0  0, a1  0, a 2  0, a 3  1 
yp  x3


1 dy
dx


2 y
x
y h  x  eC

x
dy p
dx

yh  c  x 2
 2  yp  x 3
a 3x 3  a1x  2  a 0  x 3
y  c  x 2  x 3 genel çözümdür.

Aynı problem önceki metotlarla da çözülebilir. her taraf x e bölündüğünde;
76
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
dy 2
  y  x2
dx x
2
y  e x
dx

  2 dx

   e  x  x 2  dx  c 


y  x 2    x 2  x 2  dx  c


 p x dx 
p x dx
y x  e 
  e
 g  x   dx  c 


dy
 p x  y  g x 
dx


ye
2ln x 
  e

y  x 2   x  c
2ln x 
 x 2  dx  c 


y  c  x2  x3
13.1.6 Misal
d 3y dy

 sin  x   x  cos  x 
üçüncü
dx 3 dx
denklemin genel çözümünü bulunuz.
mertebeden
homojen
olmayan
diferansiyel
Çözüm: Genel çözüm homojen ve kısmî çözümün toplamı olduğundan;
y  yh  yp
D
3

yh ve yp hesaplanmalıdır.
 D   y  0  D   D2  1  0  r1  0 ve r2,3  i,  i olduğundan dolayı homojen kısmın
çözümü;
yh  c1  c2  cos  x   c3  sin  x  şeklindedir. Tamamlayıcı çözüm ilk etapta g  x  fonksiyonuna
bağlı olarak;
yp  a1  co s  x   a 2  sin  x    a 3  a 4  x   cos  x    a5  a 6  x   sin  x  şeklinde yazılır ve bu değerlerin
homojen kısımda olup olmadığı test edilir. Benzer terimler varsa x ile çarpılır.
yp  a1  co s  x   a 2  sin  x   a 4  x  cos  x   a 6  x  sin  x   a 3  co s  x   a 5  sin  x 
yp   a1  a 3   co s  x    a 2  a 5   sin  x   a 4  x  cos  x   a 6  x  sin  x 
yp   a1   co s  x    a 2   sin  x   a 3  x  cos  x   a 4  x  sin  x 
yp   a1   co s  x    a 2   sin  x   a 3  x  cos  x   a 4  x  sin  x 
yp   a1   cos  x    a 2   sin  x   x  a 3  x  cos  x   a 4  x  sin  x   x , tekrar düzenlendiğinde;
yp  a  x 2  co s  x   b  x 2  sin  x   c  x  co s  x   d  x  sin  x 
olarak elde edilir. Türevleri alınıp
yerine yazıldığında;
2
2

2 a  x  cos  x   a  x  sin  x   2 b  x  sin  x   b  x  cos  x 

dx 
 c  cos  x   c  x  sin  x   d  sin  x   dx cos  x 
dy p
2

2a cos  x   4ax sin  x   ax cos  x   2bsin  x   4bx cos  x 

2
dx 2 
 bx sin  x   2csin  x   cx cos  x   2d cos  x   dx sin  x 
d2 yp
77
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
2

 6a sin  x   6ax cos  x   ax sin  x   6bcos  x   6bx sin  x 
olur.

2
dx 3 

bx
cos
x

3c
cos
x

cx
sin
x

3d
sin
x

dx
cos
x











d 3y p
d 3y p
dx
3

dy p
dx
 sin  x   x  cos  x  veya,
 6b  2c  4ax  cos  x    6a  2d  4bx  sin  x   sin  x   x  cos  x 
1
1
6a  2d  1 , 4b  0 , 6b  2c  0 , 4a  1  a   , b  0,c  0,d  olarak hesaplanır.
4
4
yp  a  x 2  co s  x   b  x 2  sin  x   c  x  co s  x   d  x  sin  x 
olduğundan
değerler
yerine
1
1
yazıldığında; y p    x 2  co s  x    x  sin  x  olarak elde edilir. Böylece;
4
4
1
1
y  y h  y p  y  c1  c2  cos  x   c3  sin  x    x 2  co s  x    x  sin  x 
4
4
Şeklinde genel çözüm bulunur.
13.2 Parametrelerin Değişimi Metodu ile Homojen Olmayan Diferansiyel Denklemin
Çözümü (The Method of Variation of Parameters)
İkinci mertebeden homojen olmayan diferansiyel denklemlerin çözümünde, kısmî çözüm
y p  t  yi bulmak için kullanılan farklı bir tarz ve usuldür. Bunun için;
d2
d
y t  p t  y t  q t  y t  g t 
2
dt
dt
ile ilgili misaller aşağıda verilmiştir.
diferansiyel denklemi göz önüne alınsın. Bunun
13.2.1 Misal
d2y
dy
ex

2

y

ikinci mertebeden homojen olmayan diferansiyel denklemin genel
dx 2
dx
x
çözümünü parametrelerin değişimi metoduyla hesaplayınız.
d2y
dy
 2  y  0 karakteristik denkleminden hesaplanacağından;
Çözüm: Homojen çözüm
2
dx
dx
r  r1  r2  1 
r 2  2r  1  0 
yh  c1  ex  c2  x  ex
çözüme benzetilerek yazıldığından dolayı;
yp  v1  ex  v 2  x  ex Burada; y1  ex , y2  x  e x ,   x  
v1  e x   v2   x  e x   0
v1  e x   v2  e x  x  e x  
ex
x

e x
 x
e
olur. Kısmî çözüm homojen
ex
x
0
  v1   
     ex  
e x  xe x   v2   
x
xe x
78
 v1  e x
  x
 v2  e
1  0 
  
  ex 
e x  xe x   
x
xe x
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
1
olarak hesaplanır. Veya matris tersi yerine v1 ifadesi önce
x
yok edilerek v 2 hesaplanır ve hesaplanan bu değer denklemlerden birinde
yerine yazılarak v1 hesaplanır. İşlem aşağıdadır.;
Buradan; v1  1, v2 
v1  e x 

v2   x  e x 
 v1  e x 
0
 v2  e x  x  e x 
0

ex
x
ex
x
v2  e x  x  e x  x  e x  
ex
v2   e x  
  x



v2 
1
x

1
v1   ex     x  ex   0 
  x 

v1  e x 

v2   x  e x 

0
  v1  e x   v2  e x  x  e x  
ex
x
ex
x
v2  e x 
0

v1   ex   v2   x  ex   0
 


v1 
1
x  0 
x
v1  1
1
Böylece; v1   v1  dx    1  dx  x ve v 2   v2  dx      dx  ln  x  olur. Bu değerler kısmî
x
x
x
çözümde yerine yazıldığında; yp  x  e  ln  x   x  e olur. Buradan genel çözümün;
y  c1  ex  c2  x  ex  x  ex  ln  x   x  e x
şeklinde olduğu görülür.
13.2.2 Misal
d 3y dy
1


ikinci mertebeden homojen olmayan diferansiyel denklemin genel
3
dx dx cos(x)
çözümünü bulunuz.
Çözüm: Genel çözüm homojen ve kısmî çözümün toplamı olduğundan;
r3  r  0

r   r 2  1  0 
yp  v1  v 2  cos  x   v 3  sin  x 
r1  0, r2,3  i

yh  c1  c2  cos  x   c3  sin  x 
Burada; y1  1 , y2  cos  x  , y3  sin  x  ,   x   sec  x 
v1  1  v2  cos  x    v3  sin  x    0
(1)
v1  0  v2    sin  x    v3  cos  x    0
(2)
v1  0  v2    cos  x    v3    sin  x    sec  x 
(3)
(1) ve (3) nolu denklemlerin taraf tarafa toplanmasıyla;
79
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 v1  1
 v2  cos  x  
 v1  0  v2    sin  x  
 v3  sin  x  
 v3  cos  x  

0

0
 v1   0  v2    cos  x    v3    sin  x   
v1  1
0
0

1
1
 v1 
elde edilir. (2) ve (3) nolu
cos  x 
cos  x 
1
cos  x 
denklemlerin sırasıyla sin x ve cos x terimleriyle çarpılasıyla;
 v2    sin  x   sin  x  
 v3  cos  x   sin  x  
 v2    cos  x   cos  x  
 v3    sin  x   cos  x   
 v2   sin 2  x   cos2  x  


0

0
cos  x 

cos  x 

Benzer işlemler v 3 için de yapıldığında; v3  
v2  1
1
sin  x 
olarak bulunur. Aynı sonuçlar matris
cos  x 
işlemleri ile de elde edilebilir. Aşağıda verilmiştir.
sin x 
sin x   v1   0 
 v1  1 cos x
1 cos x







0  sin x cos x  v 
0    v2   0  sin x cos x 



 2 
 v  0  cos x  sin x 
 sec x 

v
0  cos x  sin x  
 3 
 3 


1
 0 


 0 
sec x 




1


 cos x 


 
0
1 
0
 v1  1
 v1  


  







 v2   0  sin x  cos x   0    v2    1 
 v  0 cos x  sin x   1 
 v   sin  x  
 3 
 3 




 cos  x  
 cos  x  
Buradan; v1 
v1   v1  dx  
sin  x 
1
olarak hesaplanır.
, v2  1, v3  
cos  x 
cos  x 
1
 dx  ln sec  x   tan  x   ,
cos  x 
v 3   v3  dx   
v 2   v2  dx    1  dx  x
sin  x 
 dx  ln cos  x   bu değerler kısmî çözümde yerine yazıldığında;
cos  x 
yp  ln sec  x   tan  x   x  cos  x   ln cos  x   sin  x  Genel çözüm; y  yh  y p olduğundan
y  c1  c2  cos  x   c3  sin  x   ln sec  x   tan  x   x  cos  x   ln cos  x   sin  x 
şeklinde
genel
çözüm elde edilir. Parametrelerin değişimi metodunda matrisin tersi yerine aşağıdaki
şekilde de aynı sonuçları bulabilirsiniz. Aşağıdaki 2 misali dikkatlice inceleyiniz.
80
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
13.2.3 Misal
d 2 y dy

 2  y  e3x ikinci mertebeden homojen olmayan diferansiyel denklemin genel
2
dx dx
çözümünü parametrelerin değişimi metoduyla hesaplayınız.
Çözüm: Homojen çözüm;
hesaplanacağından;
d 2 y dy

 2y  e3x
2
dx dx
r1  1, r2  2 
r2  r  2  0 
benzetilerek yazıldığından dolayı;
karakteristik
denkleminden
yh  c1  e x  c2  e2x olur. Kısmî çözüm homojen çözüme
yp  v1  e x  v 2  e2x Burada; y1  e x , y2  e2x ,   x   e3x
v1  e   v2  e   0
x
v1   e   v2   2e   e
x
v2 
2x
ex
3
v1  e  x  
 v1  e  x 
 v2  e2x 

  v1  e  x 
 v2   2e2x 
 e3x
2x

e3x
0
3

3x
v1  e x   v2  e2x   0

v1  e x  
e3x
3

v1  
v1  e  x   
 v2  3  e2x   e3x
 v2  3  e2x   e3x
0

0
ex
 e2x   0
3
e4x
3
veya;
v1  e  x   v2  e2x   0
 e x
  x
 e
v1   e  x   v2   2e2x   e3x
e2x   v1   0 
     3x 
2e2x   v2  e 

 v1   e  x
    x
 v2   e
1
e2x   0 
  3x 
2e2x  e 
 e 4x 

 v1   3 
e4x
ex


v


,
v



Buradan;
olarak
   x 
1
2
3
3
 v2   e 
 3 
 e4x 
 ex 
e4x
ex

hesaplanır. Böylece; v1   v1  dx    
ve
olur. Bu

dx


v

v

dx


dx

2

 2
  3 
12
3
 3 
 2
 v1   3e  x
 
 v2   1
 3e2x
1 
3e  x   0 
 
1  e3x 
3e2x 

değerler kısmî çözümde yerine yazıldığında; yp  v1  e x  v 2  e2x
yp  
1 3x 1 3x
e  e
12
3

yp 
 yp  
e4x  x ex 2x
e  e
12
3
1 3x
 e olur. Bu değerler yerine yazıldığında;
4
1
y  c1  e x  c2  e2x   e3x genel çözümdür.
4
13.2.4 Misal
81
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
d2y
dy
 5   4  y  18  x  e  x ikinci mertebeden homojen olmayan diferansiyel denklemin
2
dx
dx
genel çözümünü parametrelerin değişimi metoduyla hesaplayınız.
d2y
dy
 5   4  y  0  D2  5  D  4  0  D1,2  1,  4 olarak
2
dx
dx
karakteristik denklemin kökleri bulunur. Buradan homojen çözüm; yh  c1  e x  c2  e4x
şeklinde bulunur. Kısmî çözüm homojen çözüme benzetilerek yazıldığından dolayı;
Çözüm: Homojen kısım;
Burada; y1  e x , y2  e4x ,   x   18  x  e x
yp  v1  e x  v 2  e4x
v1  e   v2  e
x
4x
  0
v1   e   v2   4  e
x
v2 
 v1  e  x 
4x
  18  x  e
x
 v2  e 4x 

0
   v1  e  x   v2   4  e 4x   18  x  e  x
 v2   3  e 4x   18  x  e  x
0
18  x  e  x
 v2  6  x  e3x  v1  e x   v2  e4x   0  v1  e x   6  x  e3x  e4x   0
3  e 4x
v1  6  x
Buradan;
 dv    6  x  e   dx
3x
2
 dv   6  x  dx
v2 
v1  3  x 2 olarak

1
2
1  3 x   e3x
3
hesaplanır.
2
 y p  3  x 2  e  x  1  3 x   e3x  e 4x
3
2
y p  3  x 2  e  x  1  3 x   e  x
3
yazıldığında;
2


y p   3  x 2   2 x   e x
3


2


y  c1  e  x  c2  e 4x   3  x 2   2 x   e x
3


bulunur.
şekilde;
ve olur. Bu değerler kısmî çözümde yerine
yazıldığında; yp  v1  e x  v 2  e4x

Benzer

olur.
Bu
değerler
yerine
y  c1  e x  c2  e4x   3  x 2  2 x   e x genel
çözüm
13.2.5 Misal
d2y
 4y  sin 2  x  ikinci mertebeden homojen olmayan diferansiyel denklemin genel
dx 2
çözümünü parametrelerin değişimi metoduyla hesaplayınız.
d2y
 4y  0
Çözüm: Homojen çözüm
dx 2
karakteristik denkleminden hesaplanacağından;
r2  4  0
yh  c1  cos  2x   c2  sin  2x 

r1  2i, r2  2i

olur. Kısmî çözüm
homojen çözüme benzetilerek yazıldığından dolayı;
yp  v1  cos  2x   v 2  sin  2x 
Burada; y1  cos  2x  , y2  sin  2x  ,   x   sin 2  x 
82
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
v1  cos  2x    v2  sin  2x    0
sin  2x    v1   0 
 cos  2x 


     sin 2 x 

2sin
2x
2
cos
2x
 




v1   2sin  2x    v2  2 cos  2x    sin 2  x 

 v2  
1
sin  2x    0 
 v1   cos  2x 
 

  2
 v2   2sin  2x  2cos  2x   sin  x  
Buradan;
1
1
v1   sin 3  2x  , v2   sin 2  2x  cos  2x 
2
2
1
1
 1

olarak hesaplanır. Böylece; v1   v1  dx     sin 3  2x    dx  cos  2x   cos3  2x 
4
12
 2

1
 1

ve v 2   v2  dx     sin 2  2x  cos  2x    dx  sin 3  2x  olur. Bu değerler kısmî çözümde yerine
12
 2

yazıldığında yp  v1  cos  2x   v 2  sin  2x  veya
1
1
1

y p   cos  2x   cos3  2x    cos  2x   sin 3  2x   sin  2x 
12
12
4

1
1
1
y p  cos2  2x   cos4  2x   sin 4  2x 
4
12
12
1
1
y p  cos2  2x   cos4  2x   sin 4  2x  
4
12

1
1
yp  cos2  2x    cos2  2x   sin 2  2x     cos2  2x   sin 2  2x  

4
12
1
1
3
1
y p  cos2  2x   sin 2  2x  olur.
y p  cos2  2x   cos2  2x   sin 2  2x  

6
12
12
12
1
1
y  c1  cos  2x   c2  sin  2x   cos2  2x   sin 2  2x  genel çözümdür.
6
12
13.2.6 Misal
d2y
dy
 2   y  7  e t  sin  t 
ikinci mertebeden homojen olmayan diferansiyel denklemin
2
dt
dt
genel çözümünü parametrelerin değişimi metoduyla hesaplayınız.
d2y
dy
 2   y  0 karakteristik denkleminden hesaplanacağından;
Çözüm: Homojen kısım
2
dt
dt
r 2  2r  1  0 
r1,2  1 
yh  c1  et  c2  t  et olur.
benzetilerek yazıldığından dolayı;
Kısmî
çözüm
homojen
yp  v1  y 1  v 2  y 2
yp  v1  e t  v 2  t  e t Burada; y1  e t , y2  t  e t ,   t   7  et  sin  t 
v1  e t   v2   t  e t   0
v1  e t   v2  e t  t  e t   7  e t  sin  t 

v2  et  t  e t   v2   t  e t   7  et  sin  t 
 v1  e t   v2   t  e t   0
v1  e t   v2  e t  t  e t   7  e t  sin  t 

v2  et  7  et  sin  t  
83

v2  7  sin  t 
çözüme
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 dv   7  sin  t   dt 
v 2  7  cos  t 
2
v1  et   v2   t  e t   0

v1   e t   7  sin  t    t  et   0  v1  et  7  t  sin  t   et 
 


 dv
1
 7   t  sin  t   dt
v1  7  sin  t   7  t  co s  t 
yp  v1  e t  v 2  t  e t  yp   7  sin  t   7  t  cos  t   e t  7  cos  t   t  et
 y p  7  sin  t   e t olarak elde edilir. Veya;
e t
 t
e
0

t  e t   v1  





t

e t  t  e t   v2  7  e  sin  t  

 v1  e t
  t
 v2  e
1
0

t  et  


t

e t  t  e t  7  e  sin  t  
 v1   7  sin  t  
 
 olarak hesaplanır. Buradan genel çözüm;
 v2   7  t  sin  t  
y  y h  y p  y  c1  et  c2  t  e t  7  sin  t   e t olarak hesaplanır.
13.3 D Operator Metodu (The Method of Operators)
İkinci mertebeden homojen olmayan diferansiyel denklemlerin çözümünde, kısmî çözümü
y p  t  bulmak için kullanılan farklı bir tarz ve usuldür. Bunun için Diferansiyel operator D;
D   
d  
d  
veya D  
gibi tanımlıdır. D nin tersi (inversi) D1 ile gösterilir ve;
dx
dt
D  D   y  y
1
D1  
özelliğine sahiptir. Ayrıca;
1
     dx yani D1 integral operatörüdür. Benzer şekilde diferansiyel denklemler
D
için;
  D  y  F  x  şeklinde tanımlandığında;
 1

1  D    D  y  y veya 
   D    y  y yazılabilir.   D  y  F  x  formu
   D

  D  a n Dn  a n1Dn1 
  D  y  F  x   y 
1
 a1D  a 0
 a n ,a n1,
,a1,a 0 : sabit  şeklinde olduğunda;
1
 F  x  olur. 1  D  değeri aşağıdaki özelliklere sahiptir.
  D


1
1  1
1  1
 Fx 
 F  x  
 F  x 


1  D   2  D 
1  D   2  D 
 2  D   1  D 

84
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
2.
1
1
1
  F1  x   F2  x   
 F1  x  
 F2  x 
  D
  D
  D
Ayrıca 2 adet Teoremin de bilinmesi lazımdır.
Teorem 1:   a   0 olduğu sürece
Teorem 2:
1
1
 e a x 
 eax yazılabilir. Yani D ile a değişebilir.
  D
a 
1
1
 eax  f  x    eax 
 f  x  ( eax ifadesini 1  D  nin dışına çıkarınız.)
  D
 D  a 
Daha genel bir ifade ile yapılacak işlemler şu şekilde tanımlanabilir.
y t 
Lm  D 
Ln  D 
(1)
şeklinde tanımlı ve burada;
Lm  D  b0  b1  D  b2  D2 
 bm1  Dm1  Dm
(2)
 a n1  Dn1  Dn
(3)
Ve;
L n  D   a 0  a1  D  a 2  D 2 
şeklinde tanımlı ise; tamamlayıcı çözümü bulmak için karakteristik denklem aşağıdaki gibi
yazılabilir.
Ln  D   D  r1    D  r2    D  r3  
Lm  D 
K1
K2



Ln  D   D  r1   D  r2 

 D  rn1    D  rn 
Ki

 D  ri 

(4)
Kn
 D  rn 
(5)
Buradaki K i sabitlerinin hesaplanması için, (5) denkleminin her iki tarafı  D  ri  ile çarpılır.
Yani;
 D  ri  
Lm  D   D  ri 
 D  ri   K 

 K1 
Ln  D   D  r1 
 D  r2  2

 D  ri   K 
 D  ri  i

 D  ri   K
 D  rn  n
(6)
1
Bunun sonucu D  ri olduğunda K i yalnız kalmaktadır ve böylece;

L  D 
K i  lim  D  ri   m

Dri
Ln  D  

(7)
Köklerin tekrarlamalı olması durumunda;
Kq
K q 1
Lm  D 



q
Ln  D   D  rq   D  rq q 1

K2
D  r 
q
2

K1
şeklinde olduğunda;
 D  rq 
85
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin

q L  D 
K q  lim  D  rq   m

Drq
Ln  D  

 d 
q L  D 


K q 1  lim 
D  rq   m



Drq dD
Ln  D  




 1 dk 
q L  D 


K q k  lim   k  D  rq   m
 şeklinde yazılabilir. Köklerin sanal olması durumu:
Drq k! dD
Ln  D  




Lm  D 
Kc
Kc


Ln  D   D   a  i  b    D   a  i  b  
Bunun ile ilgili misaller aşağıda verilmiştir.
13.3.1 Misal
D
 3  D  2   y  4  t denkleminin genel çözümünü operatör metodunu kullanarak çözünüz.
2
D2  3  D  2  0  r1,2  1,  2 olduğundan dolayı homojen kısmın çözümü;
yh  c1  e t  c2  e2t şeklindedir. Veya bu değer aşağıdaki şekilde de hesaplanabilir.
y


 K1
1
1
K2 
 4  t   

  4  t   
  4  t 
D

1

D

2
D

1
D

2








 D  3  D  2




2
 D  2  K1   D  1  K 2   K1  K 2   D   2  K1  K 2 
1
K1
K2



 D  1   D  2   D  1  D  2 
 D  1
 D  2
 D  1   D  2 
K1  K2  0 ve 2  K1  K2  1  K2   K1 ve 2  K1  K1  1  K1  1 ve K 2  1
olarak hesaplanır. Aynı K i değerleri aşağıdaki gibi de hesaplanabilir.


 1 

L  D 
1
1
  K1  lim 
1
K1  lim  D  r1   m
 lim   D  1 


D

1
Dr1
D

1
Ln  D  
 D  1   D  2 

  D  2   1  2



 1 

L  D 
1
1
  K 2  lim 

 1
K 2  lim  D  r2   m
 lim   D  2  


D2  D  1
Dr2
2  1
Ln  D   D2 
D  1   D  2  






değerleri elde edilir. Buradan;
y1 
4t
4t
ve y 2 
olmak üzere; y  y1  y2 denkleminden hesaplanır.
 D  1
 D  2
 D  1  y1  4  t

 p t dt 
p t dt
dy1
 y1  4  t  y1  t   e 
  e
 q  t   dt  c 


dt

86
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
 1dt
1dt
y1  t   e     e    4  t   dt  c   y1  4  4  t  c1  e t


 D  2   y2  4  t
 p t dt 
p t dt
dy2
 2  y2  4  t  y2  t   e 
  e
 q  t   dt  c 


dt


 2dt
2dt
y2  t   e     e    4  t   dt  c   y2  1  2  t  c2  e2t


y  y1  y2  y  1  2  t  c2  e2t  4  4  t  c1  e t  y  c1  e  t  c2  e 2t 5  6  t
yp
yh
şeklinde genel çözüm elde edilir.
13.3.2 Misal
D
3
 3  D   y  9  t denkleminin genel çözümünü operatör metodunu kullanarak çözünüz.
D   D2  3  0  r1  0, r2  r3  3 olduğundan dolayı homojen kısmın çözümü;
yh  c1  c2  e
y
3t
 c3  t  e
3t
şeklindedir. Veya bu değer aşağıdaki şekilde de hesaplanabilir.


 K
1
1
K2
K 3 
1




9

t


9

t



 9  t 
 
 
D   D 2  3
D D  3  D  3 
  D  0 D  3
D 3 








 



1
1
1

K1  lim   D  0 

D0 
3
 D  0  D  3  D  3  0  3  0  3



 





 1
1
1

  K  lim 

K 2  lim
D 3 
2

D 3 
D 3 
 6
D

D

3
D D  3  D  3 















1
1




 K 3  lim
K 3  lim D  3 

D 3 
D 3 

D

D

3
3
D D  3  D  3 





y







1
3 3
1
6


 K
1
1
K2
K 3 
1




9

t


9

t



 9  t 




D   D 2  3
D D  3  D  3 
  D  0 D  3
D 3 








 

 1

1
1

  9  t 
y 


 3 D 6  D  3 6  D  3 



y1 





3  t
3 t
3 t
, y2 
, y3 
,  Genel Çözüm:  y  y1  y2  y3
D
2 D  3
2 D  3




87
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
3
y1    t 2 +c1
2
y2  c2  e 
y3  c3  e
3 t
3 t
1 1
   3t
2 2

1 1
  3t
2 2
3
y  c1   t 2 +c2  e
2
3 t
1 1
   3  t  c3  e
2 2
1 1

y  c1    +c2  e
2 2

y  C1 +c2  e 
3 t
 c3  e
3 t
3 t
1 1
   3t
2 2
1 1
1
1
3
 3  t   3  t   t 2 burada C1  c1   alındığında;
2 2
2
2
2
3 t
 c3  e
3 t
3
  t 2 şeklinde genel çözüm elde edilir.
2

13.3.3 Misal
D
2
 5  D  4   y  e2x  x 2  e2x denkleminin genel çözümünü operatör metodunu kullanarak
çözünüz.
D2  5  D  4  0  r1,2  4,  1 olduğundan dolayı homojen kısmın çözümü;
yh  c1  e4x  c2  e x şeklindedir. Kısmî çözüm ise; y p 
1
  e2x  x 2  e 2x  veya
 D  5  D  4
2
yp 
1
1
 e2x  2
 x 2  e 2x şeklinde yazılabilir. Bu da 2 kısma ayrıldığında;
D

5

D

4
D

5

D

4




y p1 
1
1
1
 e2x  2
  e2x
 D  5  D  4
 2  5  2  4  18
y p2 
1
1
 x2
 x 2  e 2x  y p2  e 2x 
2
D

5

D

4


 D  2  5   D  2  4
2
2
2
y p2  e2x 
y p2 
e2x
2
1
 x2
2
D D2
y p2  

e 2x

2
1
 x 2 gerekli
D D2
1 
2
2
işlemlerin
3

  x 2  x    yp  yp1  yp2
2

1 2x e 2x  2
3
yp   e 
x  x  
18
2 
2
y h  c1  e4x  c2  e  x 
elde edilir. y  y h  y p olduğundan;
1 2x e2x
e 
18
2
3

  x 2  x   şeklinde genel çözüm bulunur.
2

88
yapılmasıyla;
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
13.3.4 Misal
D
2
 6  D  9   y   x 3  2  x   e3x denkleminin kismî çözümünü operatör metodunu kullanarak
hesaplayınız.
yp 
1
  x 3  2  x   e 3x
 D  6  D  9

2
y p  e3x 
1
 D  3
2
 6   D  3  9
  x 3  2  x 
(Kaydırma teoremi kullanıldı a=-3)
yp  e
3x
1
 2   x 3  2  x 
D

yp  e
3x
   x  2  x  dx  e
3
3x
 x4

1
 1

    x 2   dx  e 3x    x 5   x 3 
3
 20

 4

D2  6  D  9  0  r1,2  3,3 olduğundan dolayı homojen kısmın çözümü;
1
 1

yh  c1  e3x  c2  x  e3x şeklindedir. Kısmî çözüm ise; y p  e3x    x 5   x 3  veya
3
 20

1
 1

y p  c1  e3x  c2  x  e 3x  e 3x    x 5   x 3  şeklinde elde edilir.
3
 20

13.3.5 Misal
D
2
y
 2  D  1  y  4  t denkleminin genel çözümünü operatör metodunu kullanarak çözünüz.
 K


1
1
K1 
2

4

t


4

t







   4  t  olur.


2
 D2  2  D  1
  D  1  D  1 
  D  1   D  1 
Buradaki katsayıları hesaplamak için aşağıdaki formülden yararlanılır.
 1 dk
K q k  lim   k
Drq k! dD


q Lm  D  


 D  rq  

Ln  D  




1
2

K 2  lim    D  1 
D1 
 D  1   D  1





 1



1 d 

1
2


1 d

K1  lim  
D  1 
 lim  
1  0





Drq 1! dD
 D  1   D  1  Drq 1! dD 



 K
 1
K1 
0 
1
2
y


4

t


 4  t 
 4  t




2
2
2 
2 
 D  1
  D  1  D  1 
  D  1  D  1 
Görüldüğü gibi bu tür problemlere pek uygun görülmüyor. Çünkü aynı sonuç elde edildi
ve bir kolaylık sağlamadı.
89
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
y
1
 D  1
2
 4  t 
 K
 1
K1 
0 
1
2
y


4

t


 4  t 
 4  t




2
2
2 
2 
 D  1
  D  1  D  1 
  D  1  D  1 
14. Tekrarlama Soruları (Review Problems)
Burada bazı diferansiyel denklemler ve çözümleri verilmiştir. Bir diferansiyel denklemin
birden fazla çözüm metodu (usulü) olabilir. Fakat sonuçlar hep aynı çıkar. Yani sonuçlar
değişmez. Bu durum aşağıdaki problemlerde daha açık görülmektedir.
14.1 Problems:
Aşağıda verilen 1-4 diferansiyel denklemlerinin genel çözümünü “belirsiz katsayılar” veya
“parametrelerin değişimi” yöntemini kullanarak hesaplayınız
1
Cevap: y  x   c  e x 
dy y
  x  ex
dx x
(14.1)
Çözüm: Parametrelerin değişimi metodu kullanılarak çözüm yapılabilir. Bu durumda,
y  y h  y p şeklinde yazılabilir. Homojen kısmın çözümü için,
dy y
dy y
 0 
 
dx x
dx x
e
ln y 
e
ln x c

dy
dx

 C  ln  y   ln  x   c
y
x
 eln y  eln x c  eln y  eln x   ec  c  ec  yh  c  x elde edilir. Tamamlayıcı
çözüm, homojen kısmın yazılışı ile elde edildiğinden dolayı,
yp  v  x
v  x  x  e x 

v  e x  v  e x  y p  v  x  y p  e x  x  y  y h  y p
y  c  x  ex  x  y  x   c  ex  halinde genel çözüm elde edilir. Belirsiz katsayılar metodu
kullanıldığında;
yp   a  b  x   ex 
b  a  b  x  e
x
dy p
dx
 b  ex   a  b  x   ex 
b  a  b  x   ex


x
dy p
dx
  b  a  b  x   ex 
 x  ex   b  a  b  x  
dy p
dx
b  a  b  x  x
x
b  a  b  x   b  a   x 1  b  x  b  x   b  a   x 1  a  x 0  1 x1  0  x 0  0  x 1
b  1, a  0, b  a  0

yp   a  b  x   ex

yp  x  ex
y  c  x  ex  x  y  x   c  ex  şeklinde aynı genel çözüm elde edilir.
90

yp
x
 x  ex
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
2
dy 3
  y  3 x  2
dx x
3
1
C
Cevap: y  x 2  x  3
5
2
x
Çözüm: Bu denklem, 1. mertebeden lineer diferansiyel denklem olarak çözülebilir. Bu
durumda,
y  p  x   y  q  x  şekline benzetilerek çözülebilir. Fakat burada Belirsiz Katsayılar Metodu
kullanılacaktır. Genel çözüm; y  y h  y p şeklinde olduğundan ilk önce homojen kısmın
çözümü elde edilmelidir.
dy 3
dy
3
dy
dx
 y  0 
  y 

 3
dx x
dx
x
y
x
ln  y   ln  x 3   c  eln y  e
 
ln x 3 c
 e
g  x   3  x  2  yp  a  x 2  b  x  c 
 2  a  x  b 
ln y 
dy p
dx
e
1
1
 y  dy  3   x  dx  c
 
ln x 3
 ec  y 
 2a x  b 
 ln  y   3  ln  x   c
c
c
 yh  3
3
x
x
dy p
dx

3
 yp  3  x  2
x
3
 a  x 2  b  x  c   3  x  2  2  a  x  b  3  a  x  3  b  3  c  x 1  3  x  2
x 
 2  a  3  a   x1  4  b  x0  3  c  x 1  3  x1  2  x0
3
1
5  a  3, 4  b  2, 3  c  0  a  , b   , c  0
5
2
olduğu görülür. Bu değerler yerine yazıldığında,
3
1
c 3
1
yp  a  x 2  b  x  c  y p   x 2   x  y  yh  yp  y  3   x 2   x
5
2
x 5
2
şeklinde genel çözüm elde edilir. Aynı sonuç “Parametrelerin Değişimi Metodu” ile de
bulunabilir.
yh 
1
c
1
 y p  v  3  v   3  3  x  2  v   x 3   3  x  2   v  3  x 4  2  x 3
3
x
x
x
3
2
1
3
3
1
1
1
v   x 5   x 2  y p  v  3  y p    x 5   x 2   3  y p    x 2   x 
5
4
x
2
2 
5
 x
5
y  yh  yp  y 
3 sin  x  
c 3 2 1
  x   x olarak bulunur.
x3 5
2
dy
 y  cos  x   x  sin  x 
dx
Cevap: y 
sin  x   x  cos  x   C
sin  x 
Aşağıda verilen (4-7) diferansiyel denklemlerinin genel çözümünü hesaplayınız.
91
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
d2 y
dy
4
 6   10  y  3  x  e3x  2  e3x  cos  x 
2
dx
dx
Cevap: y  c2  e 3x sin  x   c1  e 3x cos  x  
5
1
sin  x   3 cos  x    e 3x  e6x  3xe 3x

60
d2y
dy
 2   2  y   x  ex   sin  x 
2
dx
dx
Cevap: y  c1  sin  x  e x  c2  e x cos  x  
1
1
20x  28  25 x  e x   cos  x    10x  4   sin  x 

50
50
d 3y dy
6

 sin  x   x  cos  x 
dx 3 dx
1
1
1
Cevap: y  c1  cos  x   c2  sin  x   cos  x   x  sin  x   x 2  cos  x   c3
4
4
4
7
d4y d2y

 7  x  3  cos  x 
dx 4 dx 2
7
9
3
Cevap: y  c1  sin  x   c2  cos  x   x 3   cos  x   x sin  x   c3 x  c 4
6
2
2
8
d 3y
dy
 3
 9  x 2 denkleminin tamamlayıcı çözümünü hesaplayınız.
3
dx
dx
Cevap: y p  x 3  2  x
9
d2y
dy
 3   2  y  sin  ex 
2
dx
dx
Cevap: y  C1  e x  C2  e 2x  e 2x  sin  e x 
 dy
 x
10 x  y2   x   y   Bernoulli diferansiyel denkleminin çözümünü bulunuz.
 dx
 y
Cevap: y 4  1 
C
0
x4
 dy

11 1  x     y 2   y  0 Bernoulli diferansiyel denkleminin sıfırdan farklı çözümü nedir?
 dx

Cevap:
12

1
1  x2

   x  C
y 1 x  2

dy 1
  y  exy diferansiyel denkleminin genel çözümünü hesaplayınız.
dx x
92
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Cevap: x 2 
2
C
e x y
15. Diferansiyel
Denklemlerin
Mühendislik
Uygulamaları
(Engineeering
Applications of Differential Equations)
Mühendisliğin birçok alanında, fiziksel problemin matematik modeli çıkartılırken karşımıza
diferansiyel denklem olarak çıkar. Bu denklemler, doğrusal olmayan kısmî diferansiyel
denklem takımı da olabilir. (Burgers, Navier-Stokes, Lid-driven cavity gibi). Bazıları da
lineer olmayan diferansiyel denklem şeklindedir. Fakat kabuller yapılarak, adi diferansiyel
denklem haline getirilirler. (Kirişlerin çökme denklemi gibi)
15.1 Misal
Kütlesi m=75kg olan bir paraşütçü, 4000m yükseklikten yere atlıyor ve paraşütünü 1
dakika sonra açıyor. yer çekimi ivmesi sabit ve g=9.81m/s2 alınıyor. Paraşüt kapalı iken
hava direnci b1=15N.s/m ve paraşüt açıldığında hava direnci b2=150N.s/m dir. Paraşütçü
yere atladığında ininceye kadar geçen süreyi hesaplayınız. Ayrıca yere ayağı dokunduğu
anda düşme hızını hesaplayınız.
Çözüm:
Şekil 3: Paraşütçüye etkiyen iç ve dış kuvvetler
Newton prensibine göre sisteme etkiyen dış kuvvetler, iç kuvvetler eşit olacağından, Şekil
3 den faydalanarak kuvvetler dengesi aşağıdaki gibi yazılır.
m  g  b1 
r2 
dy
d2y
 m 2
dt
dt
b1
r  0 
m

m
b 

r r  1   0
m

d2y
dy
 b1 
 mg
2
dt
dt
r1  0, r2  

d 2 y b1 dy
 
g
dt 2 m dt

b1
m
y h  c1  c2  e
Buradan diferansiyel denklemin homojen kısmı bulunur.
Kısmî çözümü için belirsiz katsayılar metodu (usulü) kullanıldığında;
yp  a  t

dy p
dt
a

d2 yp
dt
2
0

93
d2yp
dt
2

b1 dy p

g
m dt
 b t
m
(15.1)
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
0
b1
a  g 
m
y  c1  c2  e
 b1 t
m
c1  c2  y0 ve
a
mg
b1
mg

t
b1


yp 
y  0  0
mg
t 
b1
y  c1  c2  e

dy
 v 0 şartı uygulandığında;
dt t 0
 b1 0 m  g
b1
  c2  e m 
 v0
m
b1

c1  y0  c2
 m2  g
m
c1  y0   2  v 0 
b1 
 b1
y  y0 

y  yh  yp
b1
mg
 c2 
 v0
m
b1
 b1 0
m

mg
0
b1

 b1 t
dy
b
mg
  1  c2  e m 
dt
m
b1

c2 
c1  y0 
m2  g
m
 v0
2
b1
b1
m2  g
m
 v0
2
b1
b1
m2  g
m  m2  g
m   bm1 t m  g

v


v

t

e
0
0
b12
b1  b12
b1 
b1
sayısal değerler yerine yazıldığında;
752  9.81
75  752  9.81
75 
75  9.81
y  0
0 
 0   e 0.2t 
t
225
15  225
15 
15
y  245.25  245.25  e0.2t  49.05  t
t=60 alındığında; y  60  2697.751507m
dy
 49.05  e0.2t  49.05 ve paraşüt açıldığı andaki hızı v  60  49.04969863m / s dir.
dt
İkinci durum için (paraşüt açılı vaziyette yere inene kadar) konum denklemi;
m2  g
m  m2  g
m   bm2 t m  g
y  y0  2  v 0   2  v 0   e

t
b2
b2  b2
b2 
b2
4000  2697.751507  2.4525  24.52484932   2.4525  24.52484932   e2t  4.905  t
1304.700993  24.52484932-22.07234932  e2t  4.905  t
Buradan Newton-Rapson metodu yardımıyla; t  260.994s olarak kalan süre bulunur.
t  260.994  60  320.994s toplam süredir.
15.2 Misal
d4y
 q  x  Diferansiyel denklemiyle verilen kirişin düzgün yayılı yük altında ve iki tarafı
dx 4
ankastre bağlantılı iken çökmesi, eğilme momenti ve kesme kuvveti diyagramlarını elde
ediniz.(E: Elastisite modülü, I: kesit atalet momenti ve q(x) yayılı yüktür)
EI
Çözüm: denklemin integrali alındığında, çökme fonksiyonu ve diğerleri bulunabilir.
94
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
d4y
EI 4  0
dx
EI
d4y
E  I   4  dx  c1
dx

dy
x2
 c1  c2 x  c3
dx
2

E  I  y  c1
d 3y
E  I  3  c1
dx


d2y
E  I  2  c1x  c2
dx
x3
x2
 c2  c3x  c4  Homojen kısmın çözümüdür.
6
2
Kısmî çözüm homojen çözüme benzetilerek yazıldığından dolayı;
y p  v1
x3
x2
x2
x3
 v2
 v 3x  v 4 Burada; y1  , y 2 
, y3  x , y4  1 , ve   x   q  x  olur.
6
2
2
6
 x3 
 x2 
v1     v2     v3   x   v4  1  0
6
2
 x2 
v1     v2   x   v3  1  v4  0  0
2
 x3
6
 2
x
2

x
 1
x2
2
x
1
0

x 1 
v   0 
 1 

  v2   0 
1 0    

v
0 
 3 
0 0  v4  q(x) 
0 0

v1   x   v2  1  v3  0  v4  0  0
v1  1  v2  0  v3  0  v4  0  q  x 
0
1 
0 0
 v1  0 0
1
x   0 

 v  

2
 2 
 0 
x
   0 1  x


2  0 
 v3  
 v4  
x2
x 3  q(x) 
1

x


2
6 
Böylece; v1   v1  dx    1  dx  x , v 2   v2  dx    x  ( 1)   dx 
 q(x) 
 v1    x  q(x) 

 v  
 2  1 2

    x q(x) 
 v3   2

 v4   1 2

  x q(x) 
 6

x2
2
 x3 
x4
ve v 3   v3  dx      dx  
olur. Bu değerler kısmî
24
 6
x3 x2 x2 x3
x4
x3
x2
yp  x      x 
 v 3x  v 4
çözümde yerine yazıldığında; y p  v1  v 2
6
2 2
6
24
6
2
 x2 
x3
 v 3   v3  dx      dx 
6
 2
yp 
4  x 4 6x 4 4x 4 x 4



24
24
24 24
E  I  y  c1
x3
x2
x4
 c 2  c 3x  c 4 
6
2
24


yp 

4  x 4 6x 4 4x 4 x 4



24
24
24 24
y

yp  
1  x3
x2
x4 
c

c

c
x

c

2
3
4
 1

EI  6
2
24 
x4
24
genel
çözümdür. Sınır şartlarının yerine yazılmasıyla özel çözüm elde edilir. İki tarafı ankastre
olunca uçlarda çökme ve eğim sıfır olur. Bu şartlar yerine yazıldığında çökme
denklemindeki bilinmeyen katsayılar yerine özel çözüm elde edilir. Çözüm aşağıdadır.
dy
1  x2
x3 

c

c
x

c


2
3
 1

dx E  I  2
6
1.
y  0  0,
0
1  0
0
0 
 c1  c2  c3  0  c4  
EI  6
2
24 
95

c4  0
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
2.
dy
0
0
 0,  0  c1  c2  0  c3  
dx x 0
2
6

c3  0
3.
dy
L2
L3
 0,  0  c1  c2  L 
dx x L
2
6

1
1 L
1 L
 1
0  L2   c1  c2    , c1  c2  
2
L 6
L 6
 2
4.
L3
L2 L4
y  L   0,  0  c1  c2 

6
2 24
 L
1 L2 
0  L   c1  c2  
2 24 
 6
2

L
1 L2
c1  c2 
6
2 24
1
L
 L 
1 1  L 
12   





c
c
c
6

 1 
 1   2 
 1
6
2 L 6

Elde edilen
L  2  
  2
 
  2
 
L 
c2   L 
c2   2L

c 2   L 1   L 
6 


 6 2   24 
 12 
 24 
bu değerler genel çözümde yerine yazıldığında, kirişin çökme denklemi elde edilmiş olur.
y
1  x3
x2
x4 
c

c

c
x

c

1
2
3
4


EI  6
2
24 

y
1  L 3 L2 2 x 4 
 x  x  
E  I  12
24
24 
dy
1  L 2 L2
x3 

 x  x 
dx E  I  4
12
6

(Eğim denklemi)
d2y
1  1 2 L
L2 

 x  x  
dx 2 E  I  2
2
12 

(Moment denklemi)
d 3y
1 L


  x
3
dx
EI  2


(Kesme kuvveti denklemi)
x=0 da ankastre ve x=L de basit mesnetli kirişin, q=-1 yükü altında çökme denklemi;
y
1  5
1 2 x2 x4 
3
L

x

L   

E  I  48
16
2 24 
x=0 ve x=L de basit mesnetli kirişin, q=-1 yükü altında çökme denklemi;
y
1 4 L 3 L3
x  x  x
24
12
24
15.3 Misal:
Yay, sönümleme ve F0 sin   t  zorlama kuvveti altında salınım (titreşim) hareketi yapan
m kütlesinin hareket denklemini elde ediniz ve köklerin farklı durumuna karşılık hareketi
inceleyiniz.(m: kütle, c: sönümleme katsayısı, k: yay katsayısı)
d 2 x c dx k
F

  x  0 sin   t  haline gelir.
2
dt
m dt m
m
Sistemde zorlayıcı kuvvet bulunmadığı takdirde dinamik kuvvet analizi aşağıdaki gibidir.
Çözüm: her taraf m kütlesine bölündüğünde;
96
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
Newton prensibi uygulandığında (Dış kuvvetler = İç kuvvetler) hareket denklemi elde
edilir. Yay ve sönümleyici harekete zıt yönde kuvvet oluşturur.
c 
x
dx
d2x
 kx  m 2
dt
dt
c
k
x  x  0
m
m
c2
k


2
4m m

m
d2x
dx
 c  kx  0
2
dt
dt
c

 m

x1,2

c2
k
 0
2
4m m
c2
k
4
2
m
m
2


d 2 x c dx k

 x  0
dt 2 m dt m
x1,2  
c
2m
c2
k

2
4m
m


c2
k

2
4m m
c2  4  k  m
ccr  2 k  m (kritik sönümleme katsayısı)
Şekil 4: Yay ve sönümleme etkisi altındaki kütlenin hareket denkleminin elde
edilmesi
Kısaltma amacıyla; n 
k
c
(doğal frekans), ve  
(sönümleme oranı = damping ratio)
m
ccr
alındığında hareket denklemi;
x1,2 
2n
 2n 
2
2
 42n

x  2n x  2n  x  0
halini alır.
x1,2    n

22n  2n
x1,2    n
olur.
 2  1 değerine bağlı olarak üç farklı kök durumu olabilir.
I.
 2  1  0 ise iki tane gerçek kök vardır ve homojen kısmın çözümü;
97
n  2  1
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
x1,2    n
x h  c1  e
n  2  1 şeklindedir. Bu değerler homojen çözümde yerine yazıldığında;
 
n

2 1 t
n
 c2  e
 
n

2 1 t
n
elde edilir. başlangıç şartları verildiği takdirde;
x  0  x 0 (başlangıç konumu) ve x  0  v 0 (başlangıç hızı) özel çözüm elde edilir.
c1  e
 
n
n

2 1 0
 c2  e
 
n

2 1 0
n
 x0
c1  c2  x 0
dx
n n
 c1    n  n  2  1  e
dt




c1  n  n  2  1  e
 
n


n

2 1 0



2 1 t
 c2    n  n  2  1  e


 c2  n  n  2  1  e
 
n
n
 
n

 2 1 0
n

2 1 t
 v0


c1    n  n  2  1  c2    n  n 2  1  v 0
c1 
xh 
  n  x 0  n  2  1  x 0  v 0
2  n  2  1
  n  x 0  n  2  1  x 0  v 0
2  n   1
2
ve c2 
e
  n  x 0  n  2  1  x 0  v 0
2  n  2  1
  n  x 0  n  2  1  x 0  v 0
2  n  2  1
2 
e
n

 2 1 t
n
2 
n
n
olur.


 2 1 t
Dış kuvvet olmadan sönümlü titreşim hareketinin özel çözümüdür. Kökler gerçek olduğu
için salınım olmaz. Bu durum grafik çizildiği takdirde açıkça görülür. Bu duruma sönüm
üstü (over damped) durum denir.
 2  1  0 ise iki tane gerçek kök vardır ve bu kökler birbirine eşittir. Bu durumda
II.
da titreşim hareketi gerçekleşmez ve kökler;
x1  x 2  2n şeklindedir. Bu değerler homojen çözümde yerine yazıldığında;
x h  c1  e
2 n t
 c 2  t  e
2 n t
elde edilir. başlangıç şartları verildiği takdirde;
x  0  x 0 (başlangıç konumu) ve x  0  v 0 (başlangıç hızı) özel çözüm elde edilir.
III.
 2  1  0 ise iki tane sanal kök vardır ve homojen kısmın çözümü;
x1,2    n
n  i  1   2
tanımlandığında;
şeklindedir.
x1,2    n
d  n 1   2
sönümlü
doğal
frekans
olarak
d  i olur. Bu değerler homojen çözümde yerine
yazıldığında;
98
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
x h  en t  c1  cos  d  t   c2  sin  d  t  elde edilir. Dış kuvvet olmadığı takdirde kısmî çözüm
sıfır olacağından x  x h olur. Başlangıç şartları verildiği takdirde;
x  0  x 0 (başlangıç konumu) ve x  0  v 0 (başlangıç hızı) özel çözüm elde edilir.
en 0  c1  cos  d  0  c2  sin  d  0  x 0
c1  cos  0  c2  sin  0  x 0

c1  x 0 olduğu görülür. Hız şartı uygulandığında;
dx
   n  e n t  c1  cos  d  t   c2  sin  d  t  
dt
e n t   c1  d  sin  d  t   c2  d  cos  d  t  
  n  c1  0  0  c2  d   v 0
c2 
v 0    n  x 0
d

  n  x 0  c2  d  v 0
olduğu görülür. Bu değerler yerine yazıldığında;


v    n  x 0
x  en t   x 0  cos  d  t   0
 sin  d  t   olur ve sönümlü titreşim meydana gelir.
d


Sayısal değerler girilerek bu durum denenebilir.
Ayrıca değişik bir çözüm olarak x  A  en t  sin  d  t   denklemi de alınabilir. Çünkü
sin      sin    cos    cos    sin   olduğundan;
x  A  en t  sin    cos  d  t   sin  d  t   cos  
yazılabilir.
Yukarıda
karşılaştırıldığında;
x  Ae
tan  
n t



 sin    cos  d  t   cos    sin  d  t   olur. Buradan;


C2
 C1

c1 sin  
x0
x 0  d



c2 cos   v 0    n  x 0 v 0    n  x 0
d

  n  x 0 
A  x   v0 

d


2
2
0
olduğu görülür.


x 0  d
ve   tan 1 
 şeklindedir.
 v 0    n  x 0 
2

  n  x 0  n t
x  x   v0 
 sin  d  t  
 e
d


2
0
sönümlü serbest titreşimin hareket denklemidir.
99
verilen
çözümle
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
16. Birinci
Mertebeden
Diferansiyel
Denklem
Problemleri
(First
Order
Differential Equation Problems)
Bu bölümde 1. Mertebeden diferansiyel denklemler ile ilgili sorular ve cevapları verilmiştir.
16.1 Misal:
dx
1
 x
ile diferansiyel denklemin genel çözümünü elde ediniz.
dy e  y
Çözüm:
dy
dy
dx
1
 y  e  x  p  x   1,q  x   e x
 e x  y 

 x
dx
dx
dy e  y
1
1

1dx    1dx  x
  x dx     x dx
 e
 e  dx  c 
y x  e
  e
 1  dx  c   y  x   e 




 1

y  x   ex    e x  e x  dx  c  y  x   ex    e2x  dx  c  y  x   e x     e 2x  c 




 2

Şeklinde genel hesaplanır.
16.2 Misal:
Aşağıda verilen başlangıç değer problemini çözünüz.
4

dy 4
 2x  , x  1, 2 
 y
,
x
dx x
2

x
,
x

2,
4
 

y 1  1
(16.1)
Çözüm: Parçalı fonksiyon olduğundan 2 farklı bölge için, 2 farklı çözüm elde edilir.
dy 4
dy 4
4
 y  x2
 y  2x  ve
dx x
dx x
x
16.3 Misal:
Bir kişi bir bankadan m=55000TL ev kredisi alıyor ve bunun ödemesi 10 sene ve her ay
ödenmesi gereken miktar v=750TL olduğuna göre bankanın kişiye uyguladığı aylık kâr
miktarı yüzde kaçtır, hesaplayınız.
Çözüm:
dy
dy
 ky 
 k  dt 
dt
y

dy
  k  dt  C  ln  y   k  t  C  y  ekt C  y  eC  ekt
y
y  c  ekt olduğu görülür. Başlangıçta (t=0 iken) para miktarı m olduğundan;
y  0  m  55000 şartından,
y  c  ekt  m  c  e0  c  m olduğu görülür. Bu değer
denklemde yerine yazıldığında,
y  m  ekt olur. 1 ay sonra (t=1 için) y değeri,
100
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
y1  m  ek1  v  2 ay sonra yeni m değeri, y2  y1  ek1  v olacaktır.
 vt 
ln  e kt   ln 

 m 
 vt 
k  t  ln  e   ln 

 m 
1

 vt 
ln 

m 
k 
t
formülü
ile
hesaplanır.
Bilinen
değerler
yerine
yazıldığında;
 vt 
 750  120 
ln 
 ln 

m 
55000 

k 
 
t
120
16.4 Misal:
Bir bakteri kültürü sayısı artmasının, mevcut miktarıyla doğru orantılı olduğu
bilinmektedir. 1 saat sonra sayıldığında 1000 ve bundan 3 saat sonra sayıldığında 3000
bakteri kültürü olduğu görülmüştür. Buna göre;
a)bakteri kültürün sayısını zamana göre veren formülü elde ediniz.
b) 10,000,000 bakteri üremesi için ne kadar zaman gereklidir?
Kaynaklar:
[1]
Bernard V. Liengme, Guide to Microsoft Excel 2002 for Scientists and Engineers,
Third Edition, Elsevier, 2002
[2]
Bill Goodwine, Engineering Differential Equations Theory and Applications, Springer,
2011
[3]
Mehmet Sezer, Ayşegül Daşcıoğlu, Diferansiyel Denklemler I, Dora yayınları, 2010
[4]
İbrahim Çelik, Şevket Civelek, Diferansiyel Denklemler I, Pamukkale Üniversitesi,
2008
[5]
Morris Tenenbaum, H. Pollard, Ordinary Differential Equations, Dover Publications,
1985
[6]
R. Kent Nagle, Edward B. Saff, Arthur David Snider, Fundamentals of Differential
Equations, 8thEdition, Paerson, 2012
[7]
R. Bronson, G. Costa, Differential Equations, Schaum's Outlines 3rd edition,
McGraw-Hill, 2006
[8]
Ravi P. Agarwal, Donal O’Regan, An Introduction to Ordinary Differential Equations,
Springer, 2008
[9]
Tahsin Engin, Yunus A. Çengel, Mühendisler için Diferansiyel Denklemler, Sakarya
Üniversitesi, Makina Müh. Bölümü, 2008
[10] Wei Chau Xie, Differential Equations for Engineers, Cambridge University Press,
2010
101
PAÜ, Mühendislik Fakültesi, Diferansiyel Denklemler Ders Notları, Z.Girgin
[11] William E. Boyce, Richard C. DiPrima, Elementary Differential Equations and
Boundary Value Problems, John Wiley and Sons, 2001
[12] Mircea V. Soare, Petre P. Teodorescu, Ileana Toma, Ordinary Differential Equations
with Applications to Mechanics, Springer, 2000
102
Download