Ünite 7 Doç. Dr. Hasan TATLI OPTİK 162 Normal IŞIN GEOMETRİSİ Işınların buz kristalleri veya havadaki yağmur damlaları Geliş θ1 θ3 ile olan etkileşemine Hava atmosferik optik denir. Işınlar, tek tür olmayan bir ortam içinde, düz doğrular şeklinde hareket ederken; θ2 yansıma ve kırılma ve Su saçılma optik olayları meydana gelir. Kırılma : Yansıma θ1 = θ3 Yansıma Kırılma sin Θ1 c1 n2 = = (Snell Yasası) sin Θ 2 c2 n1 c0 ni = : Kırılma indisi, c 0 = 3 × 10 5 km / s 163 ci Atmosferde çok sayıda optik olay meydana gelir. Açık havada gökyüzü mavi, ufuk ise süt beyazdır. Gündoğumu ve günbatımında göyüzü pembe, kırmızı, turuncu ve morun parlak renklerini içeren bir görünüm kazanır. Gece, yıldızlardan, gezegenlerden ve aydan gelen ışık dışında göyüzü karanlıktır. Gece boyunca ayın büyüklüğü ve renkleri değişir. Gece yıldızlar sürekli olarak göz kırpıyormuş gibi görünürler. Tüm bunları anlayabilmek için güneş ışığının atmosferle olan etkileşiminin yakından incelenmesi gerekmektedir. RENKLER Atmosfere ulaşan güneş radyasyonunun yaklaşık yarısı görünür ışık formundadır. Güneş ışığı atmosfere girdiğinde absorbsiyon, yansıma ve saçılmaya uğrar ya da her hangi bir engelle karşılaşmaksızın yoluna devam eder. Yeryüzündeki cisimlerin gelen güneş enerjisine karşı davranışları, gelen ışığın dalga boyuna ve bu cisimlerin renk, yoğunluk, 164 bileşim vb. özelliklerine bağlıdır. Görme olayı: Elektromanyetik dalgaların gözümüzün retina tabakasındaki sinir uçlarını uyarması sonucu gerçekleşir. Çünkü retina gözün ışığa duyarlı tabakasıdır. Retina görme alıcılarına sahiptir. Bu alıcılar iki tip olup koni ve basil olarak adlandırılır. Basil (Çomak veya Çubuk) alıcılar cismin şeklinin algılanmasını sağlar ve görünür ışığın tüm dalga boylarına duyarlıdırlar; aydınlığı karanlıktan ayırmamızı sağlar. Eğer retina yalnızca basil tipi alıcılara sahip olsaydı doğayı yalnızca siyah ve beyaz olarak algılayacaktık. Koni tipi alıcılar da (basiller gibi) görünür ışığın tüm dalga boylarına karşı duyarlıdır. 0.4-0.7 µm arasındaki dalga boylarına karşı gelen güneş radyasyonu koni tipi alıcılar tarafından sinir sistemi yoluyla bir impuls şeklinde beyne iletilir. Bu impulsu renk duyusu olarak algılarız. 0.4 µm’den daha kısa veya 0.7 µm’den daha uzun dalga boyları insan gözü için renkli görme yetisini harekete geçiremez. 165 BULUTLAR VE SAÇILMA Gelen güneş ışınlarının bir yüzeye çarptıktan sonra, geliş açısına eşit bir açıyla yüzeyden uzaklaşması yansıma olarak adlandırılır. Çeşitli atmosferik elemanlar (hava molekülleri, bulutlar vb.) güneş radyasyonunu ilerleme doğrultusundan saptırır ve bütün yönlerde yansımasına neden olurlar. Bu olay saçılma olarak adlandırılır. Saçılma süreci, ortamda her hangi bir enerji kaybı ya da kazanımına neden olmaz. Dolayısı ile saçılma süreci esnasında sıcaklık değişmez. Saçılmaya genellikle hava molekülleri, küçük toz parçacıkları, su molekülleri ve çeşitli kirleticiler gibi çok küçük boyutlu maddeler neden olur. Çok küçük de olsalar bulutlar optik olarak kalındır. Bu, bulutların önemli miktarda güneş ışığını saçılmaya uğratacağı; diğer bir deyişle güneş ışınlarının saçılmaya uğramadan bulutu geçmesi olasılığının çok zayıf olduğu anlamındadır. Bulutlar aynı zamanda güneş ışığının zayıf absorblayıcısıdırlar. Dolayısı ile bir buluta baktığımızda, sayısız bulut damlacıklarının görünür güneş ışığını bütün dalga boylarında her yönde 166 saçılmaya uğratması nedeniyle beyaz olarak görünürler. 167 Bir bulut büyüdükçe yansıttığı güneş ışığının yüzdesi artarken, geçirdiği güneş ışığının yüzdesi azalır. Bulutun tabanına çok az güneş ışığı ulaştığından, saçılma da çok az olacak ve bulut tabanı karanlık görünecektir. Bulut tabanına ulaşan az miktardaki görünür ışık saçılmaktan ziyade absorblanır ve bulut tabanının daha karanlık görünmesine neden olur. Bu, halk arasında kara bulut olarak adlandırılan bulutların neden genellikle yağışa yol açtığını da açıklamaktadır. 168 PUS VE GÖKYÜZÜ Mavi renk duyusunu yaratan ışığın retinaya ulaşması sonucu gökyüzünü mavi olarak görürüz. Hava moleküllerinin büyüklüğü, bulut damlacıklarından ve görünür ışığın dalga boyundan çok daha küçüktür. Her bir O2 ve N2 molekülü seçici saçıcıdırlar. Bu moleküller görünür ışığın kısa dalga boylarını, uzun dalga boylarına göre daha etkin olarak saçılmaya uğratırlar. Bu seçici saçılma olayı Rayleigh saçılması olarak adlandırılır. Değişik saçılma tipleri aşağıdaki Tablo’da verilmiştir. Parçacık Tipi Parçacık Çapı (µm) Saçılmanın Tipi Gözlenen Olay 0.0001-0.001 Rayleigh Kirleticiler 0.01-1.0 Mie Mavi gökyüzü, kırmızı günbatımı Kahverengimsi smog Bulut damlacıkları 10-100 Geometrik Hava molekülleri Beyaz bulutlar 169 Güneş ışığı atmosfere girdiğinde mor, mavi ve yeşil gibi görünür ışığın kısa dalga boyları, sarı, turuncu ve özellikle kırmızı gibi uzun dalga boyundaki ışığa göre daha fazla saçılmaya uğrarlar. Rayleigh saçılmasının şiddeti, λ dalga boyu olmak üzere 1/λ4 şeklinde değişir. Dolayısı ile mor ışık kırmızı ışıktan 16 kat daha fazla saçılır. Gökyüzüne baktığımız zaman, görünür ışığın mor, mavi ve yeşil dalga boylarındaki saçılmış ışık bütün yönlerde gözümüze ulaşır. Bu dalga boylarındaki saçılmış ışığın birlikte oluşturduğu etki mavi ışık olarak algılanır. Bu nedenle gökyüzü mavi olarak görünür. Dünyamız renkli gökyüzüne sahip tek gezegen değildir. Örneğin toz fırtınaları nedeniyle Mars, öğle vakti kırmızı, günbatımında ise mor bir renk alır. 170 Hava molekülleri ve çok küçük parçacıklar tarafından mavi ışığın seçici saçılımı, uzaktaki dağların mavi görünmesine neden olabilir. Bazı yerler (bu yerler insan kaynaklı hava kirliliğinden uzak yerlerde olabilir) mavi pus ile örtülmüş olabilir. Mavi pus bazı özel süreçlerin sonucu olarak meydana gelmektedir. Bitkiler tarafından ozonla etkileşebilen son derece küçük partiküller (hidrokarbonlar) atmosfere bırakılır. Bu etkileşim, mavi ışığı seçici olarak saçan küçük parçacıkların (0.2 µm çapında) oluşmasına neden olur. Atmosferde asılı haldeki toz ve tuz gibi küçük parçacıkların konsantrasyonu arttıkça gökyüzünün rengi de maviden süt beyaza doğru değişir. Bu parçacıklar boyutça çok küçük olmalarına karşın, görünür ışığın bütün dalga boylarını her yönde ve eşit bir şekilde saçılmaya uğratacak kadar büyüktürler (geometrik saçılma). Görünür ışığın bütün dalga boyları gözümüze ulaştığı için gökyüzü beyaz görünür, görüş uzaklığı düşer. Bu olay pus olarak adlandırılır. 171 Eğer nem yeterince yüksek ise çözünebilir parçacıklar (çekirdekler) gittikçe büyüyecek ve pus partikülleri haline gelecektir. Bu nedenle gökyüzünün rengi, atmosferde ne kadar asılı madde olduğu hakkında bir fikir verir. Örneğin, ne kadar çok asılı madde varsa, saçılma da o kadar fazla olacak ve gökyüzü daha beyaz görünecektir. Asılı parçacıkların önemli bir kısmı yere yakın olduğundan, ufuk beyaz renkte görünür. Eğer bir dağın tepesinde isek, asılı parçacıkların önemli bir kısmı, bulunduğumuz seviyenin altında kalacağı için gökyüzü koyu mavi bir renkte görünür. Pus, güneş doğarken veya batarken ışığı saçar. Bunun sonucunda güneş ışığını daha parlak bir renkte görürüz (crepuscular rays). Benzer görüntü güneş ışınlarının bulutların arasında kalan açıklıklardan geçmesi durumunda da ortaya çıkar. 172 GÜNEŞ VE AYIN RENKLERİ Güneş öğle vakti parlak beyaz, oysa günbatımında sarı, turuncu veya kırmızı bir renkte görünür. 173 GECE YILDIZLARIN GÖRÜNÜŞÜ Bilindiği gibi daha yoğun bir ortama giren ışığın hızı azalır. Eğer ışık ortama bir açıyla girerse, ilerleme doğrultusunu değiştirir, bu olaya kırılma denir. Kırılma miktarı iki faktöre bağlıdır: Ortamın yoğunluğu ve ışığın bu ortama giriş açısı. Az yoğun bir ortamdan daha yoğun bir ortama giren ışığın hızı azalır ve normale yaklaşır; tersi durumda ise hızı artar ve normalden uzaklaşır. 174 SERAP OLAYI Atmosferde bir nesnenin gerçek konumuna göre yer değiştirmiş gibi görünmesine serap denir. Serap, bir hayal ürünü değildir. Bu olayda bizi yanıltan zihnimiz değil, atmosferdir. Atmosferdeki seraplara ışığın farklı yoğunluktaki hava katmanlarından geçmesi ve kırılması neden olur. Bu tür belirgin yoğunluk değişimleri hava sıcaklığındaki belirgin değişimlerin bir sonucudur. Sıcaklıktaki değişim ne kadar fazla ise ışığın kırılması da o kadar fazla olur. Örneğin sıcak ve güneşli bir günde, asfalt yollar önemli miktarda güneş enerjisi absorblar ve aşırı derecede ısınırlar ve yol yüzeyi ile temas halindeki havayı kondüksiyonla ısıtırlar. Ancak hava zayıf bir termal iletken olduğu için, bu yolla ısı iletimi yüzeye yakın bir tabaka ile sınırlı kalır. Dolayısı ile daha serin hava yerden biraz daha yukarıdadır. Sıcak günlerde bu yollar ıslakmış gibi görünür 175 Yer yakınıdaki havanın yukarı seviyedeki havadan daha sıcak olması durumunda, cisimler bulundukları konumdan daha aşağıda ve (sıklıkla) ters dönmüş olarak görünürler. Bu tür seraplar alçak seraplar olarak adlandırılır. Aşağıdaki verilen şekildeki ağacı dikkate alalım ve bu ağacı neden ters dönmüş olarak gördüğümüzü açıklamaya çalışalım. Yüzey üzerindeki sıcak ve az yoğun havaya giren ışık ışınları yukarı doğru kırılır ve gözümüze aşağı seviyelerden (yer seviyesinden) gelerek ulaşırlar. 176 Serap olayları yalnızca çok sıcak bölgelerde değil, çok soğuk bölgelerde de meydana gelir. Kutup bölgelerinde, karla örtülü alanların üzerindeki hava, daha yukarılardaki havaya göre çok soğuktur. Soğuk hava çok daha yoğundur dolayısı ile uzaktaki nesnelerden gelen ışık normale yaklaşarak kırılır. Bunun sonucunda uzaktaki nesne gerçek konumundan daha yukarıda görünür. Bu tip seraplar yüksek seraplar olarak adlandırılır 177 HALE, PARHELIA VE IŞIKLI KOLON Güneş veya ayın etrafında görülen dairesel ışıklar hale olarak adlandırılır. Bu görüntü, güneş ya da ay ışıklarının buz kristalleri içinden geçerken kırılması nedeniyle oluşur. Bundan dolayı halenin görülmesi sirüs türünden bulutların varlığına işaret eder. En yaygın görülen hale, 22o yarıçaplı haledir, buna küçük hale denir. Bu haleler, çok küçük buz kristallerinin (çapı 20 µm’den küçük) varlığında meydana gelirler. 46o yarıçaplı hale (büyük hale) durumunda da kolon tipindeki buz kristalleri sözkonusudur. Ancak bu durumda buz kristallerinin çapı 15-25 µm arasında değişir. 178 Eğer güneş ufka yakın bir konumda ise gözlemci ve buz kristalleri aynı yatay düzlemde bulunurlar. Böyle bir durumda gözlemci, güneşin her iki tarafında dışa doğru incelen, parlak renklerden oluşmuş bir ışık demeti görür. Bu optik oluşum parhelia (sundog) olarak adlandırılır. Parheliada güneşe yakın renk (en az bükülen) kırmızı; uzak olan renk ise (daha fazla bükülen) mavidir. 179 GÖKKUŞAĞI Gökkuşağı, gökyüzünün bir kısmında yağmur, diğer kısmında güneş varken görülen yaygın bir optik olaydır. Bu olay havaya püskürtülen spreylerde, su fıskiyelerinde ve çağlayanlarda sıklıkla görülür. Gökkuşağını görebilmek için, güneş arkamızda olacak şekilde yağışın olduğu tarafa bakmamız gerekir. 180 KORONA, GLORİ VE HEILIGENSCHEIN Küresel su damlacıklarından oluşmuş ince bulutların arkasında ayı çevreleyen ışıklı görünüm korona olarak adlandırılır. Korona güneşin etrafında da oluşur, ancak güneşin parlak ışıklarından dolayı farkedilmesi zordur. Korona: Işığın difraksiyonu sonucu oluşur. Difraksiyon: Işığın bir engelin etrafından geçerken bükülmesi şeklinde tanımlanır. Su dalgalarının küçük bir havuza bırakılan taşın etrafındaki davranışını dikkate alalım. Dalgalar taşın etrafında yayılırken, birinin çukuru diğerinin tepesi ile üst üste gelebilir. Bu durumuda dalgalar birbirlerini sönümlendirir, dolayısı ile bu kısımlarda su yüzeyi sakindir. Dalgaların bu türden girişimi sönümlendirici girişim olarak adlandırılır. Diğer taraftan iki dalga tepesinin üst üste binmesi durumunda daha büyük bir 181 dalga meydana gelir, bu da şiddetlendirici girişim olarak adlandırılır. Işık küçük su damlacıklarının etrafından geçerken benzer olaylar meydana gelir. Işık ışınlarının şiddetlendirici girişiminde daha parlak ışık, sönümlendirici girişiminde ise ortam karanlıktır. Korona bazı durumlarda beyaz, bazı durumlarda ise renkli görünebilir. Bulut damlacıkları üniform boyutta olduğu zaman korona renkli görünür. Difraksiyon nedeniyle olan bükülme ışığın dalga boyuna bağlı olduğu için, kısa dalga boylu ışık (mavi) koronanın iç kısmında, uzun dalga boylu ışık (kırmızı) ise dış kısmında yer alır. Yeni oluşmuş bulutlar, örneğin ince As (Alto-stratus) ve Ac (alto-kümülüs) korona oluşumu için en uygun bulutlardır. Bulut damlacıklarının üniform olmaması durumunda koronanın görünüşü oldukça düzensizdir. Bulutun görünüşü pembe, mavi veya yeşilin pastel tonlarından oluşmuş renkli yamalar şeklindedir. Işığın difraksiyonu sonucu oluşan bu parlak görünüm sedeflenme olarak adlandırılır. 182 Korona gibi glori’de difraksiyon olayının bir sonucudur. Bir uçağın, 50 µm’den daha küçük damlacıklardan oluşan bir bulut tabakasının üzerinde uçarken, uçağın gölgesinin etrafında oluşan renkli halkalar glori olarak adlandırılır. Sırtımız güneşe dönükken bir bulut ya da sis tabakasına baktığımızda, su damlalarının gölgesi etrafında parlak ışık halkaları görülebilir. Glori oluşumunda ışık aşağıdaki şekilde görüldüğü gibi damlaya üst kısımdan girerek, önce kırılmaya daha sonra da damlanın (ışığın geliş yönüne göre) arka kısmı tarafından yansımaya uğratılır. Damlanın alt kımından çıkan ışık bir kez daha kırılmaya uğrar. Bununla birlikte ışığın gözlerimize ulaşması için, çok kısa bir mesafe boyunca yüzey dalgası şeklinde damlanın kenarından bükülmesi gerekir. Damlaların kenarlarından gelen ışığın difraksiyonu glori olarak görmüş olduğumuz ışık halkalarını meydana getirir. 183 Çimenler üzerinde eğer çiğ oluşmuş ise güneşli sabah saatlerinde ilginç bir optik olayı gözlemek mümkündür. Sırtı güneşe dönük olan gözlemcinin başının gölgesi etrafında heiligenschein olarak adlandırılan ışıklı bir alan oluşur. Heiligenschein, hemen hemen küresel çiğ damlaları üzerine gelen güneş ışınlarının odaklanması ve gelen ışınlarla yaklaşık aynı doğrultuda tekrar yansıtılması sonucu meydana gelir. 184