Journal of Functional Foods 94 (2022) 105143 Contents lists available at ScienceDirect Journal of Functional Foods journal homepage: www.elsevier.com/locate/jff In vitro and in vivo models to study the biological and pharmacological properties of queen bee acid (QBA, 10-hydroxy-2-decenoic acid): A systematic review Marta Paredes-Barquero a, c, *, Mireia Niso-Santano a, b, c, José M. Fuentes a, b, c, Guadalupe Martínez-Chacón a, b, c, * a Departamento de. Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura Avda de la Universidad s/ n, 10003 Cáceres Spain b Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Madrid, Spain c Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres Spain A R T I C L E I N F O A B S T R A C T Keywords: 10-Hydroxy-2-Decenoic Acid QBA In vivo model In vitro model PRISMA Systematic review Royal jelly (RJ) is one of the most valued natural products and is considered beneficial to human health, mainly due to its many biological and pharmacological properties. 10-Hydroxy-2-decenoic acid (10H2DA), also known as queen bee acid (QBA), is exclusive to RJ and represents the main lipid component of this food. Most in vitro studies using QBA have reported its beneficial health properties but only a few in vivo studies have focused on these benefits. Therefore, the focus of the present systematic review (SR) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was to analyze the properties of QBA in different diseases such as cardiovascular, age-related or neurodegenerative diseases and cancer, employing in vivo and in vitro models and summarize the beneficial and protective effect of QBA that were observed in most of the studies. 1. Introduction Natural bee products, including honey, propolis and royal jelly (RJ), have been considered beneficial due to their many biological and pharmacological properties that improve human health and enhance longevity in different cell types and tissues from animal models (NisoSantano, M., González-Polo, R. A., Paredes-Barquero, M., Fuentes, J. M., & Aschner, M., 2019). In recent years, there has been special interest in studying how diet influences the development of certain disorders. RJ is one of the most widely used health-promoting foods. RJ is a bee product that is a source of nutrition for queen honey bees and is used in medical products, health foods and cosmetics. RJ exhibits a variety of biological and pharmacological activities, such as antitumor (Bincoletto, C., Eberlin, S., Figueiredo, C. A. V, Luengo, M. B., & Queiroz, M. L. S., 2005), antimicrobial (Brudzynski & Abbreviations: 10-HAD, 10-hydroxydecanoic acid; 10-H2DA, 10-Hydroxy-2-Decenoic Acid; ACC, acetyl-CoA carboxylase; AMP, adenine monophosphate; ATP, adenosine triphosphate; AMPK, AMP-activated protein kinase; Ang II, Angiotensin II; ATG, autophagy-related; CR, Caloric restriction; CRM, CR mimetics; DC, dendritic cell; DMSO, dimethyl sulfoxide; EB, Evan’s blue; EGCG, epigallocatechin-3-gallate; ELISA, enzyme-linked immunosorbent; ERK, Extracellular signal regulated Kinase; FLG, filaggrin; FoxO1a, Forkhead box O1; FoxO3a, Forkhead box O3; JNK, c-Jun N-terminal kinase; LKB1, Sirtuin-1 deacetylates liver kinase B1; LTA, lipoteichoic acid; MITF, Melanocyte Inducing Transcription Factor; MoDCs, monocyte-derived dendritic cells; mTOR, mammalian target of rapamycin; NF-κB, Nuclear factor kappa B; Nrf2, Nuclear factor-erythroid 2 related factor 2; PI3K, phosphatidylinositol 3-kinase; pRJ, protease-treated royal jelly; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PROSPERO, International Prospective Register of Systematic Reviews; QBA, queen bee acid; RAS, reninangiotensin system, RJ, Royal Jelly; ROS, reactive oxygen species; SC, stratum corneum; SIRT1, silent mating type information regulation two homolog one; SR, systematic review; SYRCLE, Systematic Review Centre for Laboratory Animal Experimentation; TA, tibial anterior; TEWL, transepidermal water loss; TGF-β1, transforming growth factor-β1; TLR, Tolerogenic Receptors; TNF-α, Tumor necrosis factor; TolDC, tolerogenic DCs; ULK1, UNC-51-like kinase; VSMC, rat vascular smooth muscle cells. * Corresponding authors at: Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Cáceres, Spain. E-mail addresses: [email protected] (M. Paredes-Barquero), [email protected] (J.M. Fuentes), [email protected] (G. Martínez-Chacón). https://doi.org/10.1016/j.jff.2022.105143 Received 15 March 2022; Received in revised form 30 May 2022; Accepted 31 May 2022 Available online 7 June 2022 1756-4646/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/). M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Sjaarda, 2015), hypotensive (Matsui et al., 2002), anti­ hypercholesterolemic (Vittek, 1995), anti-inflammatory (Kohno et al., 2004; Yang et al., 2010), antioxidant (Casamenti et al., 2015), antiaging (Ahmad, S., Campos, M. G., Fratini, F., Altaye, S. Z., & Li, J., 2020), and immunomodulatory (Kohno et al., 2004; Okamoto et al., 2003) activ­ ities, and promotes cell proliferation (Kamakura, M., Suenobu, N., & Fukushima, M. 2001; Kawano et al., 2019; Lin et al., 2019). RJ is naturally rich in fatty acids. It has been reported that the lipid fraction of RJ, including 10-hydroxy-2-decenoic acid (10-H2DA, namely, queen bee acid (QBA)), is the main fatty acid in RJ, representing approximately 40% of the total fatty acids present in RJ, and is exclusive to this food (Takikawa et al., 2013). This makes QBA the major indicator of Royal Jelly quality (Sabatini, 2009). In addition to the lipid fraction, RJ is composed of a complex of proteins that represents 9 to 18% of its content (of which 90% are proteins called mayor royal jelly proteins, whose main functions are antibacterial and immunomodulatory). The water content of RJ is 60–70%, the carbohydrate content is 7–18%, and the lipid content is 3–8% (10-H2DA is the only fatty acid present exclusively in RJ, and 10-hydroxydecanoic acid (10-HDA) is the second major fatty acid), and the rest includes amino acids and traces of mineral salts and vitamins: this food constitutes the main food of queen bees (Chamova, 2020; Sugiyama, T., Takahashi, K., & Mori, H., 2012). Most studies have reported beneficial effects of 10-H2DA in vitro, although a clear mechanism of action has not yet been elucidated. Several studies have reported that QBA also exhibits physiological and pharmacological properties, such as antitumor (Townsend, G. F., Mor­ gan, J. F., & Hazlett, B., 1959, 1960, Townsend, G. F., Brown, W. H., Felauer, E. E., & Hazlett, B., 1961) and anti-inflammatory activity; antibiotic (Blum, M. S., Novak, A. F., & Taber, S., 1959) and anti­ hypercholesterolemic (Xu, D., Mei, X., & Xu, S., 2002) functions; inhi­ bition of angiogenesis (antiangiogenic activities) (Izuta, H., Chikaraishi, Y., Shimazawa, M., Mishima, S., & Hara, H., 2009), facilitation of collagen production (Koya-Miyata et al., 2004); and immunomodulatory activities, since it inhibits the innate immune response and modulates the adaptive immune response (Gasic et al., 2007; Vucevic et al., 2007). However, a few studies exploring 10-H2DA in vivo have focused on its benefits. In vivo studies reduced anxiety-like behavior; promoted neu­ rogenesis and neuronal health; facilitated the generation of all cell types in the brain, including neurons, astrocytes and oligodendrocytes; increased neuronal production, but not glial production (Hattori, N., Nomoto, H., Fukumitsu, H., Mishima, S., & Furukawa, S., 2007); improved body composition (Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018); and extended lifespan via dietary restriction and mammalian target of rapamycin (mTOR) signaling (Honda et al., 2015). QBA could activate autophagy, as occurs with other fatty acids, both in vivo and in vitro (Niso-Santano et al., 2015). This autophagy modu­ lation could contribute to processes such as lipid metabolism, lip­ otoxicity, life extension, and antitumor activity (O’Rourke, E. J., Kuballa, P., Xavier, R., & Ruvkun, G., 2013; Singh et al., 2009; Yao et al., 2014). To summarize this evidence with precision and certainty (Lib­ erati et al., 2009), we conducted an SR following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The main objective of this review was to collect informa­ tion from in vivo and in vitro studies in which QBA was investigated at baseline or against stress, with respect to administration, doses and routes, and in terms of relationships with beneficial effects. International Prospective Register of Systematic Reviews (PROSPERO), and a registration number is not necessary. 2.2. Eligibility criteria The population, intervention, comparator, outcome and study design (PICOS) model was implemented in this systematic review (SR) as rec­ ommended by the PRISMA guidelines (Liberati et al., 2009). (1) Population: in vivo and in vitro models for different diseases were included; (2) Interventions: several studies using diverse treatments to induce stress in order to subsequently evaluate the beneficial effect of QBA were compared; (3) Comparator: we incorporated studies with a non-treated group use as a control; (4) Outcome: studies with measur­ able conclusions using different techniques were accepted and (5) Study design: we included in vivo and in vitro studies evaluating QBA and its beneficial effect in certain pharmacologically-induced diseases. Book chapters, meeting abstracts, editorials or reviews were not included. Studies that used bacteria or yeast as a model or those whose main topic was the production or mode of obtaining QBA were excluded. 2.3. Information source and search The studies were extracted from the following three electronic da­ tabases: Web of Science, Scopus, and PubMed. The search criteria included English language and original articles that were identified using this structured search strategy (TS = 10-hydroxy-2-decenoic acid) originating from 2017 to March 2021. 2.4. Study selection Titles and abstracts were evaluated for inclusion (English language, original articles, date of publication (from 2017 to March 2021), use of QBA, animal or cell models, etc.) or exclusion (reviews, production or method of obtaining QBA, studies published before 2017). Those eligible for inclusion and full-text articles were read for evaluation. Fig. 1 pre­ sents a flow diagram describing the inclusion/exclusion process fol­ lowed by reasoning. 2.5. Data collection process The following data were extracted from the articles: first author, year of publication, title, journal, animal model (number and species) and cell culture (type) used, concentration, route of administration, solvent, mode of acquisition and treatment period of QBA, in vitro or in vivo model, form of analysis to estimate the beneficial effect of QBA (RNA and protein levels, histology, immunohistochemistry, immunofluores­ cence, colorimetric test, biochemical parameters, liquid chromatogra­ phy–mass spectrometry (LC-MS/MS), cytokine analysis, mitochondrial membrane potential analysis, Reactive oxygen species (ROS) generation analysis, enzyme-linked immunosorbent (ELISA) assay, activity of en­ zymes, concentration of metabolites, antimicrobial assay, cell viability, proliferation, migration and apoptosis, chromatin immunoprecipitation, assessment of Evan’s blue (EB) dye, amount of amino acids, glucose tolerance, cadmium tolerance, body composition or behavioral testing and a concise conclusion. This information was evaluated, classified, and categorized to elucidate the beneficial effect of QBA with respect to different diseases (data not shown). 2. Materials and methods 2.6. Risk of bias in individual studies 2.1. Protocol and registration The risk of bias tool created by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) was used to determine six types of potential biases: selection, performance, detection, attrition, reporting and other biases. Three possible judgments are available for each domain: low risk, high risk or unclear (Table 3). The creation of this review was established following the PRISMA statement (Liberati et al., 2009). Approval from an ethics committee was not needed. There were no direct human health correlations; therefore, the results acquired in this review do not need to be included in the 2 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Fig. 1. Flow diagram of study selection. 2.7. Statistical analysis and 2021 (1) (Eslami-kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021). No statistical analysis were performed. 3.2.2. In vivo and in vitro models The number of studies that used in vivo models, 63.63% (14/22) (Almeer et al., 2018; Chen et al., 2018; Fan et al., 2020; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Takahashi et al., 2018; Tsuchiya et al., 2020; Watadani et al., 2017; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020; Zhang et al., 2017), was very similar compared to the number that used in vitro models, 72.72% (16/22) (Cai et al., 2018; Chen et al., 2018; Eslami-kaliji, F., Sar­ afbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021; Gu, L., Zeng, H., & Maeda, K., 2017; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Kawahata et al., 2018; Lin et al., 2020; Pandeya et al., 2019; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Tsuchiya et al., 2020; Usui et al., 2019; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020). Most of the in vivo studies used a murine model, representing 85.71% (12/14) (Almeer et al., 2018; Chen et al., 2018; Fan et al., 2020; Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Takahashi et al., 2018; Tsuchiya et al., 2020; Watadani et al., 2017; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020; (Zhang et al., 2017); 7.14% were carried out in rats (1/14) (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. 3. Results 3.1. Study selection The final number of relevant original articles identified was 163 from the Web of Science (73), PubMed (41), and Scopus (49) (databases mentioned in Fig. 1). Duplicate articles (74) were removed. Of the remaining 89 studies, 61 were excluded based on title and abstract eligibility criteria. From the final 28 full-text articles selected, 6 more were excluded after further assessment of eligibility, resulting in a total of 22 articles. 3.2. Study characteristics 3.2.1. Number of studies Twenty-two original articles were selected in this review. The selected articles represent the years 2017 to 2021: 2017 (4) (Gu, L., Zeng, H., & Maeda, K., 2017; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Watadani et al., 2017; Zhang et al., 2017), 2018 (7) (Almeer et al., 2018; Cai et al., 2018; Chen et al., 2018; Kawahata et al., 2018; Takahashi et al., 2018; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018), 2019 (3) (Pandeya et al., 2019; Usui et al., 2019; You, M., Miao, Z., Pan, Y., & Hu, F., 2019), 2020 (7) (Fan et al., 2020; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Lin et al., 2020; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Tsuchiya et al., 2020; You, M., Miao, Z., Tian, J., & Hu, F., 2020) 3 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Y., & Kim, O., 2020), while the remaining 7.14% (1/14) (Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018) used both models. Among the cell lines used in vitro, their origin was human in 37.5% (6/16) of the studies (Eslami-kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021; Gu, L., Zeng, H., & Maeda, K. 2017; X. M. Lin et al., 2020; Usui et al., 2019; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019) rat in 12.5% (2/16) (Kawahata et al., 2018; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018), and mouse in 37.5% (6/16) (Chen et al., 2018; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Pandeya et al., 2019; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Tsuchiya et al., 2020); 12.5% (2/16) of the studies (Cai et al., 2018; You, M., Miao, Z., Tian, J., & Hu, F., 2020) used a combination of different cell lines. The different animal and cell models used are described in Table 1 and Table 2. S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; You, M., Miao, Z., Tian, J., & Hu, F., 2020). Most of the articles used QBA (Cai et al., 2018; Chen et al., 2018; Eslami-kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021; Fan et al., 2020; Gu, L., Zeng, H., & Maeda, K., 2017; Lin et al., 2020; Pandeya et al., 2019; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Tsuchiya et al., 2020; Usui et al., 2019; Watadani et al., 2017; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020) as the main treatment, but there were a few that used RJ itself (Almeer et al., 2018; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Pandeya et al., 2019; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Takahashi et al., 2018; Tsuchiya et al., 2020; Usui et al., 2019; Zhang et al., 2017) or different fractions/extracts derived from the RJ (Kawahata et al., 2018; Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Pandeya et al., 2019). The method of administration was mostly oral, mixed with food or water or introduced by oral gavage (Almeer et al., 2018; Chen et al., 2018; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Takahashi et al., 2018; Tsuchiya et al., 2020; Watadani et al., 2017; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020). Only two studies used an intragastric method (Fan et al., 2020; Zhang et al., 2017), and the application in another study was by smear (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017). The solvents used to dissolve QBA or RJ in the animal experiments were diverse, from distilled or purified water (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Takahashi et al., 2018; S. Zhang et al., 2017) to physiological saline (Almeer et al., 2018; Tsuchiya et al., 2020; You, M., Miao, Z., Pan, Y., & Hu, F., 2019), ethanol (Watadani et al., 2017), food (Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018), dimethyl sulfoxide (DMSO) (Chen et al., 2018) or even vaseline (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017). In the case of cell experiments, the majority of the studies dissolved QBA in DMSO (Cai et al., 2018; Chen et al., 2018; Eslami-kaliji, F., Sar­ afbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021; Gu, L., Zeng, H., & Maeda, K., 2017; X. M. Lin et al., 2020; Pandeya et al., 2019; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Tsuchiya et al., 2020; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019), two in different types of alcohols (Gu, L., Zeng, H., & Maeda, K., 2017; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018), one in purified water (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020), one in PBS (Kawahata et al., 2018) and one in NaOH (Usui et al., 2019). Procedure times varied greatly between animal and cell experiments. The first category ranged from 1 to 4 weeks (Almeer et al., 2018; Chen et al., 2018; Fan et al., 2020; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Takahashi et al., 2018; Tsuchiya et al., 2020; Watadani et al., 2017; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, 2020; Zhang et al., 2017) or even months (Weiser, M.J., Grimshaw, V., Wynalda, K.M., Mohajeri, M.H., & Butt, C. M., 2018). The latter category contained experiments with a duration as short as minutes (Usui et al., 2019) or up to hours (Cai et al., 2018; Chen et al., 2018; Eslami-kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Kawahata et al., 2018; Lin et al., 3.2.3. Interventions In the 22 articles selected for this review, animal or cell models that presented different diseases naturally or pharmacologically were used. As a result, we divided the reviewed studies into the following 2 groups: A total of 63.63% of the studies (14/22) employed in vivo models, and experimental induction was used to create animal models of disease: neuroinflammation (You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020), immunosuppression (Fan et al., 2020), lung injury (Chen et al., 2018), cancer (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Zhang et al., 2017), osteoarthritis (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020), osteoporosis (Tsuchiya et al., 2020), hepatotoxicity (Almeer et al., 2018), chronic mild stress (Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020), sarcopenia (Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Takahashi et al., 2018), metabolic disorder (Watadani et al., 2017) and impaired brain health and body composition (Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018). A total of 72.72% of the studies (16/22) employed in vitro models. These cellular models of different diseases were classified into three groups according to cell origin: Human: Human brain microvascular endothelial cells (HBMECs) (neuroinflammation) (You, M., Miao, Z., Pan, Y., & Hu, F., 2019), WiDR human adenocarcinoma cells (colon cancer) (Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018), human lung cancer cell lines (A549, NCI-H460, and NCI-H23), human normal lung fibroblasts (IMR90), normal liver cells (L-02) and normal gastric cells (GES-1) (lung cancer) (Lin et al., 2020), human epidermis model (epidermis) (Gu, L., Zeng, H., & Maeda, K. 2017), HEK-293 (cardiovascular disease) (Cai et al., 2018), dendritic cells (DCs) and HEK-TLR4 (immunomodulation) (Eslami-kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021), HepG2 (metabolic disorder) (Usui et al., 2019) and SH-SY5Y (neuroinflammation) (You, M., Miao, Z., Tian, J., & Hu, F., 2020). Rat: Primary rat hippocampal cells (brain health and body compo­ sition and Alzheimer’s disease) (Kawahata et al., 2018; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018) and rat vascular smooth muscle cells (VSMCs) (cardiovascular disease) (Cai et al., 2018). Mouse: Mouse embryonic fibroblasts, adipose-like cell line (3 T3-L1) (metabolic disorder) (Pandeya et al., 2019), B16F10 melanoma cells (cancer) (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017), primary bone marrow cells (osteoporosis) (Tsuchiya et al., 2020), C2C12 and C3H10T1/2 cells (sarcopenia) (Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020), BV-2 cells (neuroinflammation) (You, M., Miao, Z., Tian, J., & Hu, F., 2020) and RAW 264.7 cells (lung injury, neuro­ inflammation and osteoarthritis) (Chen et al., 2018; Hong, S. H., Hwang, 4 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Table 1 Results of animal models included in this SR. In this table, we describe the different diseases analyzed, the type of animal model, whether the treatment used was with QBA or its derivative, solvent use and the method of acquisition, the type of administration (topical, intragastric, and oral), QBA concentration, follow-up period/end time point of the experiment and the main conclusion of each study. Disease In vivo model What has been used? Solvent Mode of acquisition Concentration/ dose Administration Time of procedure Main conclusion Study ID Neuroinflammation C57BL6/ J mice QBA – Purchase 100 mg/kg/d Oral gavage 4 weeks QBA exerts antineuroinflammatory effects through autophagy and regulating mitochondrial function QBA improve immunity in the thymus and spleen and has a potential role in the therapy for hypoimmunity QBA delays inflammatory process and alleviate inflammation reaction RJ improves stressinduced depression like behavior (You, M., Miao, Z., Tian, J., & Hu, F., 2020) (You, M., Miao, Z., Pan, Y., & Hu, F., 2019) (Fan et al., 2020) Physiological saline Oral Immunosuppression BALB/c mice QBA – Purchase 100 mg/kg/d Intragastric 1 week Lung injury C57BL/6 mice QBA DMSO Purchase 100 mg/kg/d Oral 1 week Chronic mild stress BALB/c mice Lyophilized royal jelly (RJ) Ethanolic extract of RJ (EERJ) RJ Food Purchase 4.5 g/kg/ d (RJ) Oral 3 weeks 2.4 g/kg/ d (EEJR) Hepatotoxicity Swiss mice Physiological saline Purchase 85 mg/kg/d Oral gavage 1 week Brain health and body composition SpragueDawley rats BALB/c mice QBA Food Purchase 12 or 24 mg/ kg/d Oral 3.5–6 months Tumor BALB/c mice RJ Distilled water Purchase 1.5 g/kg/d Intragastric 6 weeks Osteoarthritis SpragueDawley Rats Enzymatic RJ Purified water Purchase 50, 100 or 200 mg/kg/d Oral 3 weeks Osteoporosis C57BL6/ J mice RJ Physiological saline 5% ethanol in corn oil Gift 1 g/kg/d Oral gavage 4 weeks Purchase 40 mg/kg/d Melanoma C57BL/6 J QBA Vaseline Natural obtaining of RJ and further purification of QBA 0.5%, 1% or 2% Smear 3 weeks Sarcopenia C57BL/ 6J mice Lyophilized proteasetreated RJ (pRJ) Food Purchase 1% Oral 4 weeks 30 or 60 mg/ kg/d QBA 4 months RJ improves hepatotoxicity induced by CdCl2 exposure QBA improves neuron growth, protects neuron from damage and decreases anxietylike behavior RJ can influence tumor growth and QBA may slow breast cancer development ERJ improves osteoarthritis inhibiting articular cartilage degeneration QBA suppresses osteoclastogenesis by inhibiting NF-κB signaling through its receptor QBA could be a melanogenesis inhibitor by downregulating of MITF protein, tyrosinase and melanin production pRJ and QBA stimulate both proliferation and differentiation of skeletal muscles fibers (Chen et al., 2018) (Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020) (Almeer et al., 2018) (Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018) (Zhang et al., 2017) (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020) (Tsuchiya et al., 2020) (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017) (Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020) (continued on next page) 5 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Table 1 (continued ) Disease Metabolic disorders In vivo model What has been used? Solvent Mode of acquisition Concentration/ dose Administration Time of procedure Main conclusion Study ID ICR mice RJ Distilled water Purchase 1 mg/kg/d Oral 3 weeks (Takahashi et al., 2018) KK-Ay mice QBA Ethanol Purchase 3 mg/kg/d Oral 4 weeks RJ increases the phosphorylation of AMPK and acetylCoA carboxylase (ACC) in the soleus muscle QBA improves hyperglycemia and insulin resistance 2020; Pandeya et al., 2019; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020) or days (Gu, L., Zeng, H., & Maeda, K., 2017; Tsuchiya et al., 2020; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018). The ranges of doses used in the animal experiments varied from 1 to 200 mg/kg/day (Almeer et al., 2018; Chen et al., 2018; Fan et al., 2020; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Takahashi et al., 2018; Tsuchiya et al., 2020; Watadani et al., 2017; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020), with 100 mg/kg/day being the most commonly used dose (Chen et al., 2018; Fan et al., 2020; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020). The highest doses used are between 1 and 4.5 g/kg/day (Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Tsuchiya et al., 2020; Zhang et al., 2017). Two studies used QBA/RJ between 0.5 and 2% (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miya­ waki, A., & Matsubara, T., 2020). The concentrations of QBA used in cell experiments ranged from 1 to 100 µM (Gu, L., Zeng, H., & Maeda, K., 2017; Lin et al., 2020; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018; You, M., Miao, Z., Tian, J., & Hu, F., 2020) and 1–6 mM (Cai et al., 2018; Chen et al., 2018; Eslami-kaliji F., Sarafbidabad M., Kiani-Esfahani A., Mirahmadi-Zare S.Z., Dormiani K., 2021; Pandeya et al., 2019; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Tsuchiya et al., 2020; Usui et al., 2019; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019). Some of the studies used ranges of 50–300 µg/mL (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Kawahata et al., 2018; Pandeya et al., 2019) or ranges of 0.25–10 mg/mL (Pandeya et al., 2019; Shirakawa, T., Miya­ waki, A., & Matsubara, T., 2020; Usui et al., 2019). Broadly speaking, none of the studies used a single concentration of QBA/RJ: this is the reason why we cannot discuss the most commonly used concentration. The administration routes, doses and concentrations used, times of procedures and other information about QBA are summarized in Ta­ bles 1 and 2. (Watadani et al., 2017) different proteins (Cai et al., 2018; Chen et al., 2018; Fan et al., 2020; Kawahata et al., 2018; Lin et al., 2020; Pandeya et al., 2019; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miya­ waki, A., & Matsubara, T., 2020; Takahashi et al., 2018; Usui et al., 2019; Watadani et al., 2017; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020), fluorescence detection (12) (immunofluorescence, histopathology, immunocytochemistry, EB and ORO staining) (Almeer et al., 2018; Cai et al., 2018; Chen et al., 2018; Gu, L., Zeng, H., & Maeda, K., 2017; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Kawahata et al., 2018; Lin et al., 2020; Pandeya et al., 2019; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020), ELISA (7) (assays for enzyme activity, concentrations of metabolites, cytokines analysis, antimicrobial assay, tolerance test and enzyme immunoassay (EIA)) (Almeer et al., 2018; Chen et al., 2018; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018; You, M., Miao, Z., Tian, J., & Hu, F., 2020), flow cytometry (4) (to evaluate apoptosis, cell cycle, ROS generation, mitochondrial mem­ brane potential and inflammatory cytokines) (Chen et al., 2018; Lin et al., 2020; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020), cell viability (6) (Eslami-kaliji, F., Sar­ afbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020), body composition (6) (weight, muscle, tomography and histo­ morphometric analysis) (Almeer et al., 2018; Fan et al., 2020; Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Takahashi et al., 2018; Tsuchiya et al., 2020; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018), animal behavioral testing (2) (Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018), proteome (1) [48], RNA-Seq (2) (You, M., Miao, Z., Tian, J., & Hu, F., 2020; Zhang et al., 2017), Chip-qPCR (2) (Kawahata et al., 2018; Makino et al., 2016), LC-MS/MS (2) (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; You, M., Miao, Z., Pan, Y., & Hu, F., 2019), Ultra High Performance Liquid Chromatography (UPLC) (1) (Pandeya et al., 2019), absorbance (2) (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020; Takahashi et al., 2018), luminometry (1) (Cai et al., 2018), microarrays (1) (Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020) and biochemical parameters (2) (Almeer et al., 2018; Takahashi et al., 2018). 3.2.4. Outcomes Follow-up evaluations for each study were classified according to the type of examination, including quantitative polymerase chain reaction (qPCR) (14) to evaluate gene expression (Almeer et al., 2018; Cai et al., 2018; Chen et al., 2018; Eslami-kaliji, F., Sarafbidabad, M., KianiEsfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021; Gu, L., Zeng, H., & Maeda, K., 2017; Kawahata et al., 2018; Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020; Pandeya et al., 2019; Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020; Usui et al., 2019; Watadani et al., 2017; You, M., Miao, Z., Pan, Y., & Hu, F., 2019, You, M., Miao, Z., Tian, J., & Hu, F., 2020), Western blotting (14) to evaluate expression of 4. Discussion The aim of this SR was to highlight the beneficial effects related to RJ and, more specifically, QBA, both in vitro and in vivo to alleviate or 6 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Table 2 Results of in vitro models included in this SR. In this table, we described the different diseases analyzed, cell models used, whether the treatment used was with QBA or its derivative, the solvent and the method of acquisition, QBA concentration, follow-up period/end time point of experiment and the main conclusion of each study. Disease In vitro model What has been used? Solvent Mode of obtaining Concentration/ dose Time of procedure Main conclusion Study ID Lung injury RAW 264.7 cells QBA DMSO Purchase 1, 2′ 5 y 5 mM 1h (Chen et al., 2018) Neuroinflammation Human brain microvessel endothelial cells (HBMECs) BV-2 cells RAW 264.7 cells SH-SY5Y cells Primary rat hippocampal neurons QBA DMSO Purchase 1, 2, 4 and 6 mM or 1 M 1h QBA – Purchase 1, 2, 4 or 6 µM 24 h QBA delays inflammatory process and alleviate inflammation reaction QBA exerts antineuroinflammatory effects through autophagy and regulating mitochondrial function QBA Methanol Purchase 0–30 µM 48 h-7 days QBA improves neuron growth, protects neuron from damage and decreases anxiety-like behavior Osteoarthritis RAW 264.7 cells Enzymatic Royal Jelly Purified water Purchase 50, 100, 200 μg/ mL 24 h ERJ improves osteoarthritis inhibiting articular cartilage degeneration Osteoporosis Primary bone marrow cells QBA DMSO Purchase 0′ 5 mM 3 days Alzheimer disease Primary rat hippocampal neurons PBS (-)-soluble fractions of RJ DMSOsoluble fractions of RJ QBA PBS(-) Purchase of RJ and subsequent fractionation 100 μg/mL 18 or 48 h QBA suppresses osteoclastogenesis by inhibiting NF-κB signaling through its receptor QBA improves growth, reduces mortality and enhances mitochondrial health 0′ 1, 0′ 5, 1 mM 24 h Lyophilized proteasetreated RJ (pRJ) and QBA QBA – Natural obtaining of RJ and further purification of QBA Purchase 0′ 25, 0′ 5, or 1 mg/mL (pRJ) or 0′ 5 mM (QBA) 0–72 h DMSO Purchase 0′ 25, 0′ 5 and 1 mM 1h Brain health and body composition DMSO Melanoma B16F10 melanoma cells Sarcopenia C2C12 cells C3H10T1/2 cells Cardiovascular disease Rat vascular smooth muscle cells (VSMCs) HEK 293 cells Immunomodulation Dendritic cells (DCs) HEK-TLR4 cells QBA DMSO Purchase 0′ 1, 0′ 3, 0′ 5, 0′ 7, 0′ 9 y 1′ 1 mM 24 h Lung Cancer Human lung cancer cell lines (A549, NCI-H460, and NCI-H23) IMR90 human normal lung fibroblasts L-02 normal liver cells GES-1 normal gastric cells Human threedimensional epidermis model QBA DMSO Purchase 1, 3, 10, 30 or 100 µM 3, 6, 12, 24 or 36 h QBA Ethanol Purchase 10, 20, and 40 µM 24 h or 5 days Epidermis DMSO (You, M., Miao, Z., Pan, Y., & Hu, F., 2019) (You, M., Miao, Z., Tian, J., & Hu, F., 2020) (Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018) (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020) (Tsuchiya et al., 2020) (Kawahata et al., 2018) QBA could be a melanogenesis inhibitor by downregulating of MITF protein, tyrosinase and melanin production pRJ and QBA stimulate both proliferation and differentiation of skeletal muscles fibers (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017) QBA is effective against vascular inflammation attenuating Ang IIinduced inflammatory responses QBA can be use in immunotherapies in autoimmune diseases and prevent the rejection in transplantation and biomaterials implantation QBA induces ROSmediated apoptosis and cell cycle arrest (Cai et al., 2018) QBA improves the moisturizing function of the stratum corneum (Gu, L., Zeng, H., & Maeda, K., 2017) (Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020) (Eslami-kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., MirahmadiZare, S. Z., & Dormiani, K., 2021) (Lin et al., 2020) (continued on next page) 7 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Table 2 (continued ) Disease In vitro model What has been used? Solvent Mode of obtaining Concentration/ dose Time of procedure Main conclusion Study ID Colon Cancer WiDR human adenocarcinoma cell QBA – Royal Jelly was purchase and QBA purified 0′ 1-5 mM 24 h QBA is a potential antiinflammatory agent and bactericide Metabolic disorders HepG2 cells QBA NaOH 0′ 1 M Purchased 0′ 5, 1, 2 and 4 mM 0,10, 30, 60, 120 and 240 min 0, 4, 8, 12, 24, 36 and 48 h 48 h QBA plays a role in energy metabolism with a similar effect of insulin (Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018) (Usui et al., 2019) Royal Jelly Mouse embryonic fibroblasts, adipose like cell line (3 T3-L1) Royal Jelly 1′ 25, 2′ 5, 5 and 10 mg/mL DMSO Royal Jelly and QBA were purchase and the Ethyl acetate was isolated from RJ reduce the effects of various diseases as important as metabolic disor­ ders, cancer, neurodegenerative diseases or age-related diseases, among others. RJ is increasingly used as a dietary supplement for its healthpromoting effects; therefore, the number of published studies analyzing whether the beneficial effects are promoted by QBA, its main fatty acid, has increased in 2021. QBA, like other unsaturated fatty acids, is not only an essential nutrient but also exerts beneficial effects in the context of obesity, metabolic syndrome, atherosclerosis and neuro­ degeneration. The same occurs with other natural substances, such as anacardic acid, curcumin, resveratrol, spermidine and epigallocatechin3-gallate (EGCG) (Mariño, G., Pietrocola, F., Madeo, F., & Kroemer, G., 2014). RJ itself may produce allergic reactions due to its protein content. Protease treatment can reduce RJ-associated allergenicity, resulting in protease-treated royal jelly (pRJ). This proteolysis process had no effect on the QBA content of RJ (Moriyama et al., 2013). Characterization of the molecular mechanisms by which this healthy food exerts its beneficial effects is needed. This would help us to study the possible pathways and their ability to reduce aging and agingassociated pathologies, such as neurodegeneration or neuro­ inflammation, some metabolic disorders or cancer. Some of the studies selected in this SR used different cell types, but most of the studies were performed in murine models. The main benefit of using rodents is their accessibility for genetic manipulations and their ease of handling and treatments that require less volume and doses. Furthermore, the beneficial effects can be measured in an accessible way and in an objective fashion (Lee & Longo, 2011; Mariño, G., Pietrocola, F., Madeo, F., & Kroemer, G., 2014). In this sense, the identification of animal models that mimic the different human pathologies is essential to determine the evolution of certain diseases, to identify new therapies and to study the limitations and benefits of these drugs (Colle, D., Farina, M., Ceccatelli, S., & Raciti, M., 2018, 2020; Cristóvão et al., 2020). 1 mg/mL (Pandeya et al., 2019) maximal activity of mitochondrial enzymes by endurance training in the soleus muscle, even though no significant effect of RJ treatment on mitochondrial adaptation was observed in the plantaris or tibial anterior (TA) muscles. Acute RJ treatment and endurance exercise additively increased the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in the soleus muscle, while no effect was noted in the plantaris or TA muscles. Neither endurance training nor RJ treatment had a signif­ icant effect on final body weight at the end of the experiment (Takahashi et al., 2018). Daily oral administration of pRJ in mice prevents a decrease in the size of skeletal muscle fibers (Niu et al., 2013; Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020). It also increased the expres­ sion of proliferation- and differentiation-related genes but did not alter the expression of catabolic genes. Free fatty acid receptor 4 (FFAR4) could be a therapeutic target for the treatment of obesity-related metabolic disorders (Brenner, C., Gal­ luzzi, L., Kepp, O., & Kroemer, G., 2013), as well as inflammation and cancer (Lin et al., 2020; Yang, Chou, Widowati, Lin, & Peng, 2018). However, in osteoporosis, another age-related disease, QBA interacts directly with FFAR4 on osteoclasts, suppressing osteoclast genesis by inhibiting the Nuclear factor kappa B (NF-κB) signaling pathway (Tsu­ chiya et al., 2020). QBA improves rheumatoid arthritis by blocking the p38 kinase and c-Jun N-terminal kinase (JNK)-AP-1 signaling pathways (Yang et al., 2010); moreover, Tumor necrosis factor (TNF)-α and IL-6 levels are decreased and inhibit articular cartilage degeneration by preventing extracellular matrix degradation and cartilage cell damage (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020). This receptor might also be involved in the regulation of adipogenesis (Horrocks and Farooqui, 2004), inflammation, insulin resistance (Honda et al., 2015; Takikawa et al., 2013) and bone resorption (Tsuchiya et al., 2020; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018). QBA decreases muscle mass in female mice but increases bone den­ sity (Fan et al., 2020; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018) in a sex-dependent manner. It has also been reported that QBA protects against bone loss induced by es­ trogen deficiency in menopause-related issues (Fan et al., 2020), further implying that estrogen receptors are important sites of QBA activity. Together, these findings indicate that QBA is a modulator of estradiol receptors (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017; Sugiyama, T., Takahashi, K., & Mori, H., 2012; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018) and allows us to explain the sex differences in body composition by QBA-estrogen receptor interactions (Welle, 2002). A phytoestrogen-rich diet can have estrogenic effects in the absence of estradiol or at lower levels observed in adult male Sprague–Dawley 4.1. Age-related diseases In most mammalian species, including humans, aging is associated with a decline in skeletal muscle mass and function, termed sarcopenia (Delmonico et al., 2007; Ibebunjo et al., 2013; Welle, 2002). Sarcopenia is associated with the downregulation of genes that regulate mito­ chondrial biogenesis, fission and fusion, which indicates that sarcopenia is characterized by depressed mitochondrial energy metabolism and dynamics (Ibebunjo et al., 2013). The oral administration of RJ in mice familiarized with treadmill exercise had a significant positive effect on inducing the increase in 8 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Table 3 Summary of SYRCLÉ s risk of bias. In this table, we describe all types of bias for each in vivo study reviewed. Selection bias (sequence generation, baseline characteristics and allocation concealment), performance bias (random housing and blinding), detection bias (random outcome assessment and blinding), attrition bias (incomplete outcome data) and reporting bias (selective outcome reporting). Study ID Random sequence analysis (Selection bias) Baseline characteristics (Selection bias) Allocation concealment (Selection bias) Random housing (Performance bias) Blinding (Performance bias) Random outcome assessment (Detection bias) Binding of outcome assessment (Detection bias) Incomplete outcome data (attrition bias) Selective reporting (Reporting bias) (Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018) (Chen et al., 2018) (Fan et al., 2020) (Zhang et al., 2017) (Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K., 2020) (Almeer et al., 2018) (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017) (Tsuchiya et al., 2020) (You, M., Miao, Z., Pan, Y., & Hu, F., 2019) (You, M., Miao, Z., Tian, J., & Hu, F., 2020) (Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O., 2020) (Takahashi et al., 2018) (Watadani et al., 2017) (Shirakawa, T., Miyawaki, A., & Matsubara, T., 2020) Low Low High Low Low High Unclear Low Low Low Low Low Low High High High Low Low Low Low High Low High High High Low Low Low Low Low Low High High High Low Low Low High Low Low High High High Low Low Low Low Low Low High High High Low Low Low Low High Low High High High Low Low Unclear Unclear High High High High High Low Low Low Low Low Low High High High Low Low Low Low Low Low High High High Low Low Low Low Low Low High High High Low Low Low Low Low Low High High High Low Low Low High High Low High High High Low Low High High High High High High High Low Low rats (Weber, K. S., Setchell, K. D. R., Stocco, D. M., & Lephart, E. D., 2001). This increases Extracellular signal regulated Kinase (ERK) (Makino et al., 2016) and AMPK signaling (Watadani et al., 2017). Sirtuin-1 deacetylates liver kinase B1 (LKB1), increasing its capacity to phosphorylate and activate AMPK (Ghosh, H. S., McBurney, M., & Robbins, P. D., 2010; Lau, A. W., Liu, P., Inuzuka, H., & Gao, D., 2014). induce the proliferation of VSCMs (Wang et al., 2008). QBA attenuated Ang II-induced inflammatory responses in rat VSCMs, making QBA an effective component against vascular inflammation (Cai et al., 2018). Mitochondria play an important role in metabolic health, and their disruption is implicated in different diseases, such as obesity (a major public health problem (Kopelman, 2000) caused by excess white adipose tissue (Park, 2009)) and insulin resistance (Montgomery & Turner, 2015). The administration of RJ in vivo induced weight loss and improved hyperglycemia in obese/diabetic mice but did not improve insulin resistance (Yoshida et al., 2017). However, long-term administration of QBA markedly improves hyperglycemia and insulin resistance, even though it does not prevent obesity (Usui et al., 2019; Watadani et al., 2017). Interestingly, QBA plays a role in energy metabolism and can affects body composition. Aged male rats and young mice that consumed QBA exhibited increased weight gain and adipose mass and better 4.2. Metabolic disorders The primary risk factor for cardiovascular disease is aging. The structural and molecular changes associated with age accelerate these processes (Monk & George, 2015). Atherosclerosis, the major cause of death associated with cardiovascular diseases, is produced by the accumulation of VSMCs, secreted products, inflammatory cells, lipids and debris (Wang & Bennett, 2012). Angiotensin II (Ang II), the active component of the renin-angiotensin system (RAS), has been shown to 9 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 degeneration. It is clear that QBA promotes neurogenesis from neural stem/progenitor cells and neuroprotection through autophagy activa­ tion in in vitro studies (Hattori, N., Nomoto, H., Fukumitsu, H., Mishima, S., & Furukawa, S., 2007; Martínez-Chacón et al., 2021). weight maintenance during behavioral stress whereas QBA decreased adipose tissue in females (Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018). In vitro, a study performed in the 3 T3-L1 cell line, one of the most reliable models to study adipogenesis (Zhang et al., 2015), showed that RJ inhibited lipid accumulation and that QBA inhibited the initiation of adipogenesis, indicating potential anti-adipogenic activity. QBA also inhibits ROS production, which means that it could be useful against obesity-linked oxidative stress (Pandeya et al., 2019). QBA plays a role in energy metabolism, inhibiting lipolysis and promoting glycolysis and lipogenesis via an insulin-like effect by sup­ pressing aquaporin 9 (AQP9) gene expression (Calamita et al., 2012; Usui et al., 2019). It also prevented hepatic injury, oxidative stress, and inflammation by upregulating Nuclear factor-erythroid 2 related factor 2 (Nrf2) and the antiapoptotic protein Bcl-2 in a murine model (Almeer et al., 2018). Honey exhibited this effect in rats by inducing antioxidant enzymes and reducing the levels of serum transaminases, alkaline phosphatase and bilirubin (Mahesh, A., Shaheetha, J., Thangadurai, D., & Rao, D. M., 2009). Similar results were observed with EGCG, further extending lifespan in healthy rats by activating the longevity factors Forkhead box O3 (FoxO3a) and silent mating type information regula­ tion two homolog one (SIRT1) (Niu et al., 2013). In other studies, un­ saturated fatty acids promoted the formation of triglyceride-enriched lipid droplets and induced autophagy in hepatocytes, affecting lip­ oapoptosis. This induction of autophagy protects against lipotoxicity and may have therapeutic benefits for obesity-induced steatosis and liver injury (Mei et al., 2011). Caloric restriction (CR) and CR mimetics (CRMs) reduce body weight and activate AMPK by changing the AMP/ATP ratios and depleting intracellular acetyl coenzyme A (as a result of changing NADH/NADC ratios and increasing SIRT1 expression). This is accompanied by a reduction in the acetylation of most autophagy proteins, including autophagy-related (ATG): ATG5, ATG7, ATG12, and ATG8 (Calamita et al., 2012; Makino et al., 2016), and activation of the autophagic process in all the studied organs in mice together with weight loss (Calamita et al., 2012; Makino et al., 2016). Several CRMs reduce the advancement of neurodegenerative diseases (as shown for spermidine, nicotinamide and resveratrol), likely through their capacity to induce autophagy in rodents (Makino et al., 2016). In contrast, other substances used to increase body weight have inhibited the autophagic process (Calamita et al., 2012). Given that QBA activates the same signaling pathways as some known CR, this fatty acid may be a new potential CRM (MartínezChacón et al., 2021). 4.4. Immunomodulation and cancer QBA could be applied in different dendritic cell (DC)-based immu­ notherapies in autoimmune diseases and prevent rejection in trans­ plantation and biomaterial implantation (Eslami-kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dor­ miani, K., 2021) through an increase in the levels of IL-10, an important anti-inflammatory mediator, accompanied by a reduction in proin­ flammatory mediators and decreased production of IL-6 (You, M., Miao, Z., Tian, J., & Hu, F., 2020). While saturated fatty acids activate the immune system, unsaturated fatty acids, such as QBA, inhibit agonist-induced activation of Tolero­ genic Receptors (TLRs) (Lancaster et al., 2018) and lead to decreased adhesion to expressed receptors (Sanderson, P., Yaqoob, P., & Calder, P. c., 1995). QBA has an inhibitory effect on the maturation of DCs when they are cultured at the surface of different biomaterial films. These cells not only possess similar morphology to iDCs but also exhibit tolerogenic DCs (tolDC), characterized through the low-level expression of markers, particularly CD86 and CD80 (Zheng, X., Zhou, F., Gu, Y., Duan, X., & Mo, A., 2017) immunophenotyping in the presence of QBA (Eslamikaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K., 2021). Many different compounds are widely used to generate tolDCs in tissue engineering, autoimmune disease, and transplantation. The tolDCs generated through rapamycin possess a weak ability to secrete cytokines while being powerful stimulators for T cells (Boks et al., 2012), but those generated through IL-10 have considerable potential in tolerance induction, a high ability to secrete IL-10 and a low ability to activate T cells (Keselowsky, B. G., & Lewis, J. S., 2017). The tolDCs generated through QBA have similar immunophenotyp­ ing characteristics to those generated by IL-10, and because the in vivo consumption of IL-10 leads to systemic suppression of the immune system, QBA could be a potent candidate for clinical tests (Eslami-kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dor­ miani, K., 2021). QBA recovers dysfunction of the thymus, and the spleen restores immunity after immunosuppressive treatment in mice. In this case, QBA could promote immunological capabilities to improve human health. Low doses of QBA stimulated the proliferation of T-cells in human monocyte-derived dendritic cells (MoDCs) in culture and in vitro cell proliferation of splenocytes (Fan et al., 2020; Gasic et al., 2007; Mihajlovic, D., Rajkovic, I., Chinou, I., & Colic, M., 2013). QBA exerts an anti-inflammatory response in vitro (Chen, Y. F., Wang, K., Zhang, Y. Z., Zheng, Y. F., & Hu, F. L., 2016; 2018; Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018). In vivo, QBA delayed the inflammatory process and decreased inflammatoryrelated cell cytokine production in pneumonia caused by lipoteichoic acid (LTA) from Staphylococcus aureus (Chen et al., 2018; Kuo et al., 2003). QBA also induced apoptosis and cell cycle arrest, which indicates possible therapeutic potential against other inflammatory diseases, such as lung cancer (Lin et al., 2020), the most common cause of cancer death (Nasim, F., Sabath, B. F., & Eapen, G. A., 2019), or colon cancer (Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C., 2018). QBA also inhibits melanogenesis by downregulating Melanocyte Inducing Transcription Factor (MITF) protein, tyrosinase and melanin production (Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C., 2017). In contrast, other melanogenesis inhibitors, such as kojic acid, arbutin, and ascorbic acid, did not have this effect (Choi et al., 2010; Kim et al., 2004). Unsaturated fatty acids such as oleate and linoleate stimulate 4.3. Neurodegenerative diseases RJ and QBA improved health and extended the lifespans of nema­ todes, flies and mice (Honda et al., 2015). Studies have shown that fatty acids in the diet are related to the fatty acid composition of the brain (Horwitt, M. K., Harvey, C. C., & Century, B., 1959), neuronal devel­ opment (Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C., & Logan, R. W., 1992) and neuroprotection, making QBA a potential treatment for a multitude of neurological disorders (Horrocks, L. A., & Farooqui, A. A., 2004). QBA increased growth, reduced mortality and enhanced mitochon­ drial health in primary hippocampal neurons (Kawahata et al., 2018; Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018). It also confers improvements in mood- or cognition-related behaviors, ameliorates brain pathology and restores cognitive func­ tions in vivo. Similar results were obtained in a mouse model of amyloid deposition with dietary hydroxytyrosol (Nardiello, P., Pantano, D., Lapucci, A., Stefani, M., & Casamenti, F., 2018). Fatty acids contained in RJ reduced depression-like behavior (Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M., 2018) by acting on corticosterone synthesis in the adrenal gland and hippocampal neuronal 10 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 autophagic flow in epithelial mammary cells (Pauloin et al., 2010). A study performed in a mouse model of breast cancer revealed that RJ affected the expression of diverse genes, especially genes related to immunity, highlighting the importance of the immunomodulatory effect of RJ (Zhang et al., 2017; Zhang et al., 2017). Moreover, QBA may be implicated in slowing breast cancer development (Zhang et al., 2017). The regulation of innate immune signaling and tumor development can occur through the modulation of autophagy. In this sense, the down­ regulation of UNC-51-like kinase (ULK1) has been found in most breast cancer tissues (Zhang et al., 2017). QBA could also play an important role in the development of auto­ phagy through an anti-neuroinflammatory effect. QBA activated the NFκB pathway, similar to EGCG (Niu et al., 2013). QBA also increased the transcriptional activity of Forkhead box O1 (FoxO1a), which addition­ ally increased the upstream protein expression of SIRT1 and FoxO3a. On the other hand, it promotes the activation of the AMPK pathway and can regulate autophagy by either phosphorylating ULK1, which then acti­ vates the phosphatidylinositol 3-kinase (PI3K) complex (You, M., Miao, Z., Pan, Y., & Hu, F., 2019), and can also upregulate SIRT1 in an NADdependent manner (Qiu et al., 2015). In this sense, SIRT1 can mediate autophagy through the deacetylation of FoxO1a or FoxO3a and has a potential protective role in gastric cancer (Qiu et al., 2015). EGCG ex­ tends lifespan in healthy rats by reducing liver and kidney damage and improving age-associated inflammation and oxidative stress through the inhibition of NF-κB signaling by activating longevity (Niu et al., 2013). 5. Conclusion The present SR integrated data across studies with the goal of pro­ vides a new pharmacological basis for the beneficial potential of RJ, and more specifically QBA, as a functional and health-promoting food item that enables the prevention of various diseases. QBA exerts its protective effects both in vitro and in vivo. In this SR, we have found beneficial effects respect to age-related diseases, metabolic disorders, immuno­ modulation and cancer, but further in vivo studies are needed to eluci­ date the mechanism of action by which QBA exerts its protective effects, as well as to clarify its role in the modulation of cardiovascular and neurodegenerative diseases through the prevention of inflammation, oxidative stress and apoptosis. CRediT authorship contribution statement Marta Paredes-Barquero: Conceptualization, Data curation, Formal analysis, Investigation, Methodology. Mireia Niso-Santano: Supervi­ sion, Writing – review & editing. José M. Fuentes: Supervision, Writing – review & editing. Guadalupe Martínez-Chacón: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Supervision. Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 4.5. Other diseases It has been proven that the topical application of QBA increases the amount of filaggrin (FLG), the main protein involved in the formation of the stratum corneum (SC), the outermost layer of the skin, and the protein in charge of maintaining hydration of the epidermis (Kezic et al., 2008) and the levels of amino acids (Gu, L., Zeng, H., & Maeda, K., 2017). Although QBA poorly penetrates into skin, a study demonstrated that the use of RJ incorporated liposomes greatly increased QBA pene­ tration (Perminaite, K., Maria Fadda, A., Sinico, C., & Ramanauskiene, K., 2021). This barrier does not shrink with age, but the loss of water and reduction of lipids and ceramides can lead to dry skin, which is frequently accompanied by other effects, such as pruritus (Gu, L., Zeng, H., & Maeda, K., 2017; Tagami, 2008). QBA also promotes collagen production in fibroblast cell lines through transforming growth factor-β1 (TGF-β1), which is an important factor for collagen production (KoyaMiyata et al., 2004). It has been proved that autophagy activators such as rapamycin, lithium, LYN-1604 or cysteamine among others exert a protective effect for dry eye disease, keratitis and other corneal diseases (MartínezChacón et al., 2020). QBA, as an autophagy activator itself (MartínezChacón et al., 2021), could have a positive impact over corneal diseases when used topically. In situ gels containing RJ or QBA are promising ocular drug delivery systems compared to conventional topical eye drops (Perminaite et al., 2021). Acknowledgements This work was supported by a grant (IB18048) from Junta de Extremadura, Spain and a grant (RTI2018-099259-A-I00) from Minis­ terio de Ciencia e Innovación, Spain and from the Instituto de Salud Carlos III, CIBERNED (CB06/05/004). This work was also partially supported by “Fondo Europeo de Desarrollo Regional” (FEDER) from the European Union. M.P-B is a recipient of a fellowship from the “Plan Propio de Iniciación a la Investigación, Desarrollo Tecnológico e Innovación, (University of Extremadura)”. G.M-C is supported by University of Extremadura (ONCE Foundation). M.N-S was funded by the “Ramon y Cajal” Program (RYC-2016-20883) Spain. J.M.F. received research support from the Instituto de Salud Carlos III, CIBERNED (CB06/05/ 004). References Ahmad, S., Campos, M. G., Fratini, F., Altaye, S. Z., & Li, J. (2020). New Insights into the Biological and Pharmaceutical Properties of Royal Jelly. International Journal of Molecular Sciences, 21(2), 382. https://doi.org/10.3390/ijms21020382 Almeer, R. S., Alarifi, S., Alkahtani, S., Ibrahim, S. R., Ali, D., & Moneim, A. (2018). The potential hepatoprotective effect of royal jelly against cadmium chloride-induced hepatotoxicity in mice is mediated by suppression of oxidative stress and upregulation of Nrf2 expression. Biomedicine and Pharmacotherapy, 106(May), 1490–1498. https://doi.org/10.1016/j.biopha.2018.07.089 Bincoletto, C., Eberlin, S., Figueiredo, C. A. V., Luengo, M. B., & Queiroz, M. L. S. (2005). Effects produced by Royal Jelly on haematopoiesis: Relation with host resistance against Ehrlich ascites tumour challenge. International Immunopharmacology, 5(4), 679–688. https://doi.org/10.1016/j.intimp.2004.11.015 Blum, M. S., Novak, A. F., & Taber, S. (1959). 10-Hydroxy-delta 2-decenoic acid, an antibiotic found in royal jelly. Science (New York, N.Y.), 130(3373), 452–453. https://doi.org/10.1126/science.130.3373.452 Boks, M. A., Kager-Groenland, J. R., Haasjes, M. S. P., Zwaginga, J. J., van Ham, S. M., & ten Brinke, A. (2012). IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction - A comparative study of human clinicalapplicable DC. Clinical Immunology, 142(3), 332–342. https://doi.org/10.1016/j. clim.2011.11.011 Brenner, C., Galluzzi, L., Kepp, O., & Kroemer, G. (2013). Decoding cell death signals in liver inflammation. Journal of Hepatology, 59(3), 583–594. https://doi.org/10.1016/ j.jhep.2013.03.033 Brudzynski, K., & Sjaarda, C. (2015). Honey glycoproteins containing antimicrobial peptides, Jelleins of the Major Royal Jelly Protein 1, are responsible for the cell wall 4.6. Human clinical studies Positive results have been found in different human clinical studies with RJ supplementation. Oral intake of RJ may improve erythropoiesis, glucose tolerance and mental health (Morita et al., 2012), prevent the decline in femoral bone mass and strength in postmenopausal women (Matsushita, H., Shimizu, S., Morita, N., Watanabe, K., & Wakatsuki, A., 2021), increased hydration of the stratum corneum without affecting transepidermal water loss (TEWL) (Yoshimoto et al., 2018) and act as a good hypocholesterolemic agent and thus attenuating the risk of car­ diovascular diseases (Chiu et al., 2017). But, there is a need of further research to confirm these results. 11 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 lytic and bactericidal activities of honey. PloS One, 10(4), Article e0120238. https:// doi.org/10.1371/journal.pone.0120238 Cai, Q., Ji, S., Sun, Y., Yu, L., Wu, X., & Xie, Z. (2018). 10-Hydroxy-trans-2-decenoic acid attenuates angiotensin II-induced inflammatory responses in rat vascular smooth muscle cells. Journal of Functional Foods, 45(January), 298–305. https://doi.org/ 10.1016/j.jff.2018.04.034 Calamita, G., Gena, P., Ferri, D., Rosito, A., Rojek, A., Nielsen, S., Marinelli, R. A., Frühbeck, G., & Svelto, M. (2012). Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biology of the Cell, 104(6), 342–351. https://doi.org/10.1111/boc.201100061 Casamenti, F., Grossi, C., Rigacci, S., Pantano, D., Luccarini, I., & Stefani, M. (2015). Oleuropein Aglycone: A Possible Drug against Degenerative Conditions. In Vivo Evidence of its Effectiveness against Alzheimer’s Disease. Journal of Alzheimer’s Disease, 45(3), 679–688. https://doi.org/10.3233/JAD-142850 Chamova, R. (2020). The Role Of Royal Jelly To Human Health. December, 23–25. Chen, Y. F., Wang, K., Zhang, Y. Z., Zheng, Y. F., & Hu, F. L. (2016). In Vitro AntiInflammatory Effects of Three Fatty Acids from Royal Jelly. Mediators of Inflammation, 2016. https://doi.org/10.1155/2016/3583684 Chen, Y. F., You, M. M., Liu, Y. C., Shi, Y. Z., Wang, K., Lu, Y. Y., & Hu, F. L. (2018). Potential protective effect of Trans-10-hydroxy-2-decenoic acid on the inflammation induced by Lipoteichoic acid. Journal of Functional Foods, 45(January), 491–498. https://doi.org/10.1016/j.jff.2018.03.029 Chiu, H. F., Chen, B. K., Lu, Y. Y., Han, Y. C., Shen, Y. C., Venkatakrishnan, K., Golovinskaia, O., & Wang, C. K. (2017). Hypocholesterolemic efficacy of royal jelly in healthy mild hypercholesterolemic adults. In Pharmaceutical Biology (Vol., 55(1), 497–502. https://doi.org/10.1080/13880209.2016.1253110 Choi, Y. K., Rho, Y. K., Yoo, K. H., Lim, Y. Y., Li, K., Kim, B. J., Seo, S. J., Kim, M. N., Hong, C. K., & Kim, D.-S. (2010). Effects of vitamin C vs. multivitamin on melanogenesis: Comparative study in vitro and in vivo. International Journal of Dermatology, 49(2), 218–226. https://doi.org/10.1111/j.1365-4632.2009.04336.x Colle, D., Farina, M., Ceccatelli, S., & Raciti, M. (2018). Paraquat and Maneb Exposure Alters Rat Neural Stem Cell Proliferation by Inducing Oxidative Stress: New Insights on Pesticide-Induced Neurodevelopmental Toxicity. Neurotoxicity Research, 34(4), 820–833. https://doi.org/10.1007/s12640-018-9916-0 Colle, D., Santos, D. B., Naime, A. A., Gonçalves, C. L., Ghizoni, H., Hort, M. A., & Farina, M. (2020). Early Postnatal Exposure to Paraquat and Maneb in Mice Increases Nigrostriatal Dopaminergic Susceptibility to a Re-challenge with the Same Pesticides at Adulthood: Implications for Parkinson’s Disease. Neurotoxicity Research, 37(1), 210–226. https://doi.org/10.1007/s12640-019-00097-9 Cristóvão, A. C., Campos, F. L., Je, G., Esteves, M., Guhathakurta, S., Yang, L., Beal, M. F., Fonseca, B. M., Salgado, A. J., Queiroz, J., Sousa, N., Bernardino, L., Alves, G., Yoon, K. S., & Kim, Y. S. (2020). Characterization of a Parkinson’s disease rat model using an upgraded paraquat exposure paradigm. European Journal of Neuroscience, 52 (4), 3242–3255. https://doi.org/10.1111/ejn.14683 Delmonico, M. J., Harris, T. B., Lee, J. S., Visser, M., Nevitt, M., Kritchevsky, S. B., Tylavsky, F. A., & Newman, A. B. (2007). Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. Journal of the American Geriatrics Society, 55(5), 769–774. https://doi.org/ 10.1111/j.1532-5415.2007.01140.x Eslami-kaliji, F., Sarafbidabad, M., Kiani-Esfahani, A., Mirahmadi-Zare, S. Z., & Dormiani, K. (2021). 10-Hydroxy-2-Decenoic Acid a Bio-Immunomodulator in Tissue Engineering; Generates Tolerogenic Dendritic Cells By Blocking the Toll-Like Receptor4. Journal of Biomedical Materials Research - Part A. https://doi.org/ 10.1002/jbm.a.37152 Fan, P., Han, B., Hu, H., Wei, Q., Zhang, X., Meng, L., Nie, J., Tang, X., Tian, X., Zhang, L., Wang, L., & Li, J. (2020). Proteome of thymus and spleen reveals that 10-hydroxy­ dec-2-enoic acid could enhance immunity in mice. Expert Opinion on Therapeutic Targets, 24(3), 267–279. https://doi.org/10.1080/14728222.2020.1733529 Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C., & Logan, R. W. (1992). Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet (London, England), 340(8823), 810–813. https://doi.org/10.1016/0140-6736(92)92684-8 Gasic, S., Vucevic, D., Vasilijic, S., Antunovic, M., Chinou, I., & Colic, M. (2007). Evaluation of the immunomodulatory activities of royal jelly components in vitro. Immunopharmacology and Immunotoxicology, 29(3–4), 521–536. https://doi.org/ 10.1080/08923970701690977 Ghosh, H. S., McBurney, M., & Robbins, P. D. (2010). SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE, 5(2), 1–8. https://doi.org/10.1371/ journal.pone.0009199 Gu, L., Zeng, H., & Maeda, K. (2017). 10-Hydroxy-2-Decenoic Acid in Royal Jelly Extract Induced Both Filaggrin and Amino Acid in a Cultured Human Three-Dimensional Epidermis Model. Cosmetics, 4(4). https://doi.org/10.3390/cosmetics4040048 Hattori, N., Nomoto, H., Fukumitsu, H., Mishima, S., & Furukawa, S. (2007). Royal jelly and its unique fatty acid, 10-hydroxy-trans-2-decenoic acid, promote neurogenesis by neural stem/progenitor cells in vitro. Biomedical Research, 28(5), 261–266. https://doi.org/10.2220/biomedres.28.261 Honda, Y., Araki, Y., Hata, T., Ichihara, K., Ito, M., Tanaka, M., & Honda, S. (2015). 10Hydroxy-2-Decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis Elegans Through Dietary Restriction and Target of Rapamycin Signaling. Journal of Aging Research, 2015. https://doi.org/10.1155/ 2015/425261 Hong, S. H., Hwang, S. W., Son, Y. K., Lee, N. Y., & Kim, O. (2020). Prevention or treatment of enzyme treated royal jelly on monosodium-iodoacetate-induced osteoarthritis. Journal of Biomedical Translational Research, 21(1), 1–10. https://doi. org/10.12729/jbtr.2020.21.1.1 Horrocks, L. A., & Farooqui, A. A. (2004). Docosahexaenoic acid in the diet: Its importance in maintenance and restoration of neural membrane function. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70(4), 361–372. https://doi. org/10.1016/j.plefa.2003.12.011 Horwitt, M. K., Harvey, C. C., & Century, B. (1959). Effect of dietary fats on fatty acid composition of human erythrocytes and chick cerebella. Science (New York, N.Y.), 130(3380), 917–918. https://doi.org/10.1126/science.130.3380.917 Ibebunjo, C., Chick, J. M., Kendall, T., Eash, J. K., Li, C., Zhang, Y., … Glass, D. J. (2013). Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia. Molecular and Cellular Biology, 33(2), 194–212. https://doi.org/10.1128/mcb.01036-12 Izuta, H., Chikaraishi, Y., Shimazawa, M., Mishima, S., & Hara, H. (2009). 10-Hydroxy-2decenoic acid, a major fatty acid from royal jelly, inhibits VEGF-induced angiogenesis in human umbilical vein endothelial cells. Evidence-Based Complementary and Alternative Medicine : ECAM, 6(4), 489–494. https://doi.org/ 10.1093/ecam/nem152 Kamakura, M., Suenobu, N., & Fukushima, M. (2001). Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochemical and Biophysical Research Communications, 282(4), 865–874. https://doi.org/10.1006/bbrc.2001.4656 Kawahata, I., Xu, H., Takahashi, M., Murata, K., Han, W., Yamaguchi, Y., Fujii, A., Yamaguchi, K., & Yamakuni, T. (2018). Royal jelly coordinately enhances hippocampal neuronal expression of somatostatin and neprilysin genes conferring neuronal protection against toxic soluble amyloid-β oligomers implicated in Alzheimer’s disease pathogenesis. Journal of Functional Foods, 51(May), 28–38. https://doi.org/10.1016/j.jff.2018.10.006 Kawano, Y., Makino, K., Jinnin, M., Sawamura, S., Shimada, S., Fukushima, S., & Ihn, H. (2019). Royal jelly regulates the proliferation of human dermal microvascular endothelial cells through the down-regulation of a photoaging-related microRNA. Drug Discoveries & Therapeutics, 13(5), 268–273. https://doi.org/10.5582/ ddt.2019.01070 Keselowsky, B. G., & Lewis, J. S. (2017). Dendritic cells in the host response to implanted materials. Seminars in Immunology, 29, 33–40. https://doi.org/10.1016/j. smim.2017.04.002 Kezic, S., Kemperman, P. M. J. H., Koster, E. S., De Jongh, C. M., Thio, H. B., Campbell, L. E., Irvine, A. D., McLean, I. W. H., Puppels, G. J., & Caspers, P. J. (2008). Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum. Journal of Investigative Dermatology, 128(8), 2117–2119. https://doi.org/10.1038/jid.2008.29 Kim, D.-S., Park, S.-H., Kwon, S.-B., Li, K., Youn, S.-W., & Park, K.-C. (2004). (-)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesis via decreased MITF production. Archives of Pharmacal Research, 27(3), 334–339. https://doi.org/ 10.1007/BF02980069 Kohno, K., Okamoto, I., Sano, O., Arai, N., Iwaki, K., Ikeda, M., & Kurimoto, M. (2004). Royal jelly inhibits the production of proinflammatory cytokines by activated macrophages. Bioscience, Biotechnology, and Biochemistry, 68(1), 138–145. https:// doi.org/10.1271/bbb.68.138 Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404(6778), 635–643. https://doi.org/10.1038/35007508 Koya-Miyata, S., Okamoto, I., Ushio, S., Iwaki, K., Ikeda, M., & Kurimoto, M. (2004). Identification of a collagen production-promoting factor from an extract of royal jelly and its possible mechanism. Bioscience, Biotechnology, and Biochemistry, 68(4), 767–773. https://doi.org/10.1271/bbb.68.767 Kuo, C. T., Chiang, L. L., Lee, C. N., Yu, M. C., Bai, K. J., Lee, H. M., Lee, W. S., Sheu, J. R., & Lin, C. H. (2003). Induction of nitric oxide synthase in RAW 264.7 macrophages by lipoteichoic acid from Staphylococcus aureus: Involvement of protein kinase C- and nuclear factor-κB-dependent mechanisms. Journal of Biomedical Science, 10(1), 136–145. https://doi.org/10.1159/000068076 Lancaster, G. I., Langley, K. G., Berglund, N. A., Kammoun, H. L., Reibe, S., Estevez, E., … Febbraio, M. A. (2018). Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metabolism, 27(5), 1096–1110.e5. https://doi.org/10.1016/j. cmet.2018.03.014 Lau, A. W., Liu, P., Inuzuka, H., & Gao, D. (2014). SIRT1 phosphorylation by AMPactivated protein kinase regulates p53 acetylation. American Journal of Cancer Research, 4(3), 245–255. http://www.ncbi.nlm.nih.gov/pubmed/24959379% 0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4065405. Lee, C., & Longo, V. D. (2011). Fasting vs dietary restriction in cellular protection and cancer treatment: From model organisms to patients. Oncogene, 30(30), 3305–3316. https://doi.org/10.1038/onc.2011.91 Legaki, N., Narita, Y., Hattori, N., Hirata, Y., & Ichihara, K. (2020). Royal jelly reduces depression-like behavior through possible effects on adrenal steroidogenesis in a murine model of unpredictable chronic mild stress. Bioscience, Biotechnology and Biochemistry, 84(3), 606–612. https://doi.org/10.1080/09168451.2019.1691496 Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7). https://doi. org/10.1371/journal.pmed.1000100 Lin, X. M., Liu, S. B., Luo, Y. H., Xu, W. T., Zhang, Y., Zhang, T., Xue, H., Zuo, W. B., Li, Y. N., Lu, B. X., & Jin, C. H. (2020). 10-HDA Induces ROS-Mediated Apoptosis in A549 Human Lung Cancer Cells by Regulating the MAPK, STAT3, NF-κB, and TGF-β1 Signaling Pathways. BioMed Research International, 2020. https://doi.org/10.1155/ 2020/3042636 Lin, Y., Shao, Q., Zhang, M., Lu, C., Fleming, J., & Su, S. (2019). Royal jelly-derived proteins enhance proliferation and migration of human epidermal keratinocytes in an in vitro scratch wound model. BMC Complementary and Alternative Medicine, 19 (1), 1–16. https://doi.org/10.1186/s12906-019-2592-7 12 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Mahesh, A., Shaheetha, J., Thangadurai, D., & Rao, D. M. (2009). Protective effect of Indian honey on acetaminophen induced oxidative stress and liver toxicity in rat. Biologia, 64(6), 1225–1231. https://doi.org/10.2478/s11756-009-0205-5 Makino, J., Ogasawara, R., Kamiya, T., Hara, H., Mitsugi, Y., Yamaguchi, E., Itoh, A., & Adachi, T. (2016). Royal Jelly Constituents Increase the Expression of Extracellular Superoxide Dismutase through Histone Acetylation in Monocytic THP-1 Cells. Journal of Natural Products, 79(4), 1137–1143. https://doi.org/10.1021/acs. jnatprod.6b00037 Mariño, G., Pietrocola, F., Madeo, F., & Kroemer, G. (2014). Caloric restriction mimetics: Natural/physiological pharmacological autophagy inducers. Autophagy, 10(11), 1879–1882. https://doi.org/10.4161/auto.36413 Martínez-Chacón, G., Paredes-Barquero, M., Yakhine-Diop, S. M., Uribe-Carretero, E., Bargiela, A., Sabater-Arcis, M., Morales-García, J., Alarcón-Gil, J., Alegre-Cortés, E., Canales-Cortés, S., Rodríguez-Arribas, M., Camello, P. J., Pedro, J.-M.-B.-S., PerezCastillo, A., Artero, R., Gonzalez-Polo, R. A., Fuentes, J. M., & Niso-Santano, M. (2021). Neuroprotective properties of queen bee acid by autophagy induction. Cell Biology and Toxicology. https://doi.org/10.1007/s10565-021-09625-w Martínez-Chacón, G., Vela, F. J., Campos, J. L., Abellán, E., Yakhine-Diop, S. M. S., & Ballestín, A. (2020). Autophagy modulation in animal models of corneal diseases: A systematic review. Molecular and Cellular Biochemistry, 474(1–2), 41–55. https://doi. org/10.1007/s11010-020-03832-5 Matsui, T., Yukiyoshi, A., Doi, S., Sugimoto, H., Yamada, H., & Matsumoto, K. (2002). Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. The Journal of Nutritional Biochemistry, 13 (2), 80–86. https://doi.org/10.1016/s0955-2863(01)00198-x Matsushita, H., Shimizu, S., Morita, N., Watanabe, K., & Wakatsuki, A. (2021). Effects of royal jelly on bone metabolism in postmenopausal women: A randomized, controlled study. In Climacteric (Vol., 24(2), 164–170. https://doi.org/10.1080/ 13697137.2020.1806815 Mei, S., Ni, H. M., Manley, S., Bockus, A., Kassel, K. M., Luyendyk, J. P., Copple, B. L., & Ding, W. X. (2011). Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 339(2), 487–498. https://doi.org/10.1124/jpet.111.184341 Mihajlovic, D., Rajkovic, I., Chinou, I., & Colic, M. (2013). Dose-dependent immunomodulatory effects of 10-hydroxy-2-decenoic acid on human monocytederived dendritic cells. Journal of Functional Foods, 5(2), 838–846. https://doi.org/ 10.1016/j.jff.2013.01.031 Monk, B. A., & George, S. J. (2015). The Effect of Ageing on Vascular Smooth Muscle Cell Behaviour - A Mini-Review. Gerontology, 61(5), 416–426. https://doi.org/10.1159/ 000368576 Montgomery, M. K., & Turner, N. (2015). Mitochondrial dysfunction and insulin resistance: An update. Endocrine Connections, 4(1). https://doi.org/10.1530/EC-140092 Morita, H., Ikeda, T., Kajita, K., Fujioka, K., Mori, I., Okada, H., Uno, Y., & Ishizuka, T. (2012). Effect of royal jelly ingestion for six months on healthy volunteers. Nutrition Journal, 11(1), 1. https://doi.org/10.1186/1475-2891-11-77 Moriyama, T., Yanagihara, M., Yano, E., Kimura, G., Seishima, M., Tani, H., Kanno, T., Nakamura-Hirota, T., Hashimoto, K., Tatefuji, T., Ogawa, T., & Kawamura, Y. (2013). Hypoallergenicity and immunological characterization of enzyme-treated royal jelly from apis mellifera. Bioscience, Biotechnology and Biochemistry, 77(4), 789–795. https://doi.org/10.1271/bbb.120924 Nardiello, P., Pantano, D., Lapucci, A., Stefani, M., & Casamenti, F. (2018). Diet Supplementation with Hydroxytyrosol Ameliorates Brain Pathology and Restores Cognitive Functions in a Mouse Model of Amyloid-β Deposition. Journal of Alzheimer’s Disease, 63(3), 1161–1172. https://doi.org/10.3233/JAD-171124 Nasim, F., Sabath, B. F., & Eapen, G. A. (2019). Lung Cancer. Medical Clinics of North America, 103(3), 463–473. https://doi.org/10.1016/j.mcna.2018.12.006 Niso-Santano, M., González-Polo, R. A., Paredes-Barquero, M., Fuentes, J. M., & Aschner, M. (2019). Natural Products in the Promotion of Healthspan and Longevity. Clinical Pharmacology and Translational Medicine, 3(1), 149–151. https://doi.org/ 10.31700/2572-7656.000123 Niso-Santano, M., Malik, S. A., Pietrocola, F., Bravo-San Pedro, J. M., Mariño, G., Cianfanelli, V., … Kroemer, G. (2015). Unsaturated fatty acids induce non-canonical autophagy. The EMBO Journal, 34(8), 1025–1041. https://doi.org/10.15252/ embj.201489363 Niu, K., Guo, H., Guo, Y., Ebihara, S., Asada, M., Ohrui, T., Furukawa, K., Ichinose, M., Yanai, K., Kudo, Y., Arai, H., Okazaki, T., & Nagatomi, R. (2013). Royal jelly prevents the progression of sarcopenia in aged mice in vivo and in vitro. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 68(12 A), 1482–1492. https://doi.org/10.1093/gerona/glt041 Niu, Y., Na, L., Feng, R., Gong, L., Zhao, Y., Li, Q., Li, Y., & Sun, C. (2013). The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats. Aging Cell, 12(6), 1041–1049. https://doi.org/10.1111/acel.12133 O’Rourke, E. J., Kuballa, P., Xavier, R., & Ruvkun, G. (2013). ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy. Genes and Development, 27(4), 429–440. https://doi.org/10.1101/gad.205294.112 Okamoto, I., Taniguchi, Y., Kunikata, T., Kohno, K., Iwaki, K., Ikeda, M., & Kurimoto, M. (2003). Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sciences, 73(16), 2029–2045. https://doi.org/10.1016/s0024-3205(03)00562-9 Pandeya, P. R., Lamichhane, R., Lee, K. H., Kim, S. G., Lee, D. H., Lee, H. K., & Jung, H. J. (2019). Bioassay-guided isolation of active anti-adipogenic compound from royal jelly and the study of possible mechanisms. BMC Complementary and Alternative Medicine, 19(1), 1–14. https://doi.org/10.1186/s12906-018-2423-2 Park. (2009). Silibinin attenuates adipogenesis in 3T3-L1 preadipocytes through a potential upregulation of the insig pathway. International Journal of Molecular Medicine, 23(5), 521–527. Doi: 10.3892/ijmm_00000174. Pauloin, A., Chat, S., Péchoux, C., Hue-Beauvais, C., Droineau, S., Galio, L., Devinoy, E., & Chanat, E. (2010). Oleate and linoleate stimulate degradation of β-casein in prolactin-treated HC11 mouse mammary epithelial cells. Cell and Tissue Research, 340(1), 91–102. https://doi.org/10.1007/s00441-009-0926-3 Peng, C. C., Sun, H. T., Lin, I. P., Kuo, P. C., & Li, J. C. (2017). The functional property of royal jelly 10-hydroxy-2-decenoic acid as a melanogenesis inhibitor. BMC Complementary and Alternative Medicine, 17(1), 1–9. https://doi.org/10.1186/ s12906-017-1888-8 Perminaite, K., Maria Fadda, A., Sinico, C., & Ramanauskiene, K. (2021). Formulation of Liposomes Containing Royal Jelly and Their Quality Assessment. Journal of Nanoscience and Nanotechnology, 21(5), 2841–2846. https://doi.org/10.1166/ jnn.2021.19053 Perminaite, K., Marksa, M., Stančiauskaitė, M., Juknius, T., Grigonis, A., & Ramanauskiene, K. (2021). Formulation of ocular in situ gels with lithuanian royal jelly and their biopharmaceutical evaluation in vitro. Molecules, 26(12), 1–20. https://doi.org/10.3390/molecules26123552 Qiu, G., Li, X., Che, X., Wei, C., He, S., Lu, J., Jia, Z., Pang, K., & Fan, L. (2015). SIRT1 is a regulator of autophagy: Implications in gastric cancer progression and treatment. FEBS Letters, 589(16), 2034–2042. https://doi.org/10.1016/j.febslet.2015.05.042 Sabatini, A. G. (2009). Quality and standardisation of Royal Jelly. Journal of ApiProduct and ApiMedical Science, 1(1), 16–21. https://doi.org/10.3896/ibra.4.01.1.04 Sanderson, P., Yaqoob, P., & Calder, P. c. (1995). Effects of Dietary Lipid Manipulation upon Rat Spleen Lymphocyte Functions and the Expression of Lymphocyte Surface Molecules. Journal of Nutritional & Environmental Medicine, 5(2), 119–132. Doi: 10.3109/13590849509000211. Shirakawa, T., Miyawaki, A., & Matsubara, T. (2020). Daily Oral Administration of Protease-Treated Royal Jelly Protects Against Denervation-Induced Skeletal Muscle Atrophy. Nutrients, 12(3089), 1–13. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M., & Czaja, M. J. (2009). Autophagy regulates lipid metabolism. Nature, 458(7242), 1131–1135. https://doi.org/10.1038/nature07976 Sugiyama, T., Takahashi, K., & Mori, H. (2012). Royal Jelly Acid, 10-Hydroxy-trans-2Decenoic Acid, as a Modulator of the Innate Immune Responses. Endocrine, Metabolic & Immune Disorders-Drug Targets, 12(4), 368–376. https://doi.org/10.2174/ 187153012803832530 Tagami, H. (2008). Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Archives of Dermatological Research, 300(SUPPL. 1), 1–6. https://doi.org/10.1007/s00403-007-0799-9 Takahashi, Y., Hijikata, K., Seike, K., Nakano, S., Banjo, M., Sato, Y., Takahashi, K., & Hatta, H. (2018). Effects of royal jelly administration on endurance training-induced mitochondrial adaptations in skeletal muscle. In. Nutrients (Vol. 10, Issue 11). https://doi.org/10.3390/nu10111735 Takikawa, M., Kumagai, A., Hirata, H., Soga, M., Yamashita, Y., Ueda, M., Ashida, H., & Tsuda, T. (2013). 10-Hydroxy-2-decenoic acid, a unique medium-chain fatty acid, activates 5’-AMP-activated protein kinase in L6 myotubes and mice. Molecular Nutrition & Food Research, 57(10), 1794–1802. https://doi.org/10.1002/ mnfr.201300041 Townsend, G. F., Brown, W. H., Felauer, E. E., & Hazlett, B. (1961). Studies on the in vitro antitumor activity of fatty acids. IV. The esters of acids closely related to 10hydroxy-2-decenoic acids from royal jelly against transplantable mouse leukemia. Canadian Journal of Biochemistry and Physiology, 39, 1765–1770. https://doi.org/ 10.1139/o61-195 Townsend, G. F., Morgan, J. F., & Hazlett, B. (1959). Activity of 10-hydroxydecenoic acid from royal jelly against experimental leukaemia and ascitic tumours. Nature, 183 (4670), 1270–1271. https://doi.org/10.1038/1831270a0 Townsend, G. F., Morgan, J. F., Tolnai, S., Hazlett, B., Morton, H. J., & Shuel, R. W. (1960). Studies on the in vitro antitumor activity of fatty acids. I. 10-Hydroxy-2decenoic acid from royal jelly. Cancer Research, 20, 503–510. http://www.ncbi.nlm. nih.gov/pubmed/13839101. Tsuchiya, Y., Hayashi, M., Nagamatsu, K., Ono, T., Kamakura, M., Iwata, T., & Nakashima, T. (2020). The key royal jelly component 10-hydroxy-2-decenoic acid protects against bone loss by inhibiting NF-kB signaling downstream of FFAR4. Journal of Biological Chemistry, 295(34), 12224–12232. https://doi.org/10.1074/jbc. ra120.013821 Usui, S., Soda, M., Iguchi, K., Abe, N., Oyama, M., Nakayama, T., & Kitaichi, K. (2019). Down-regulation of aquaporin 9 gene transcription by 10-hydroxy-2-decenoic acid: A major fatty acid in royal jelly. Food Science and Nutrition, 7(11), 3819–3826. https://doi.org/10.1002/fsn3.1246 Vittek, J. (1995). Effect of royal jelly on serum lipids in experimental animals and humans with atherosclerosis. Experientia, 51(9–10), 927–935. https://doi.org/ 10.1007/BF01921742 Vucevic, D., Melliou, E., Vasilijic, S., Gasic, S., Ivanovski, P., Chinou, I., & Colic, M. (2007). Fatty acids isolated from royal jelly modulate dendritic cell-mediated immune response in vitro. International Immunopharmacology, 7(9), 1211–1220. https://doi.org/10.1016/j.intimp.2007.05.005 Wang, J. C., & Bennett, M. (2012). Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circulation Research, 111(2), 245–259. https://doi.org/10.1161/CIRCRESAHA.111.261388 Wang, Y., Yan, T., Wang, Q., Wang, W., Xu, J., Wu, X., & Ji, H. (2008). PKC-dependent extracellular signal-regulated kinase 1/2 pathway is involved in the inhibition of Ib on AngiotensinII-induced proliferation of vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 375(1), 151–155. https://doi.org/ 10.1016/j.bbrc.2008.07.137 13 M. Paredes-Barquero et al. Journal of Functional Foods 94 (2022) 105143 Watadani, R., Kotoh, J., Sasaki, D., Someya, A., Matsumoto, K., & Maeda, A. (2017). 10Hydroxy-2-decenoic acid, a natural product, improves hyperglycemia and insulin resistance in obese/diabetic KK-Ay mice, but does not prevent obesity. Journal of Veterinary Medical Science, 79(9), 1596–1602. https://doi.org/10.1292/jvms.170348 Weber, K. S., Setchell, K. D. R., Stocco, D. M., & Lephart, E. D. (2001). Dietary soyphytoestrogens decrease testosterone levels and prostate weight without altering LH, prostate 5α-reductase or testicular steroidogenic acute regulatory peptide levels in adult male Sprague-Dawley rats. Journal of Endocrinology, 170(3), 591–599. https:// doi.org/10.1677/joe.0.1700591 Weiser, M. J., Grimshaw, V., Wynalda, K. M., Mohajeri, M. H., & Butt, C. M. (2018). Long-term administration of queen bee acid (QBA) to rodents reduces anxiety-like behavior, promotes neuronal health and improves body composition. Nutrients, 10 (1). https://doi.org/10.3390/nu10010013 Welle, S. (2002). Cellular and Molecular Basis of Age-Related Sarcopenia. Canadian Journal of Applied Physiology, 27(1), 19–41. https://doi.org/10.1139/h02-002 Xu, D., Mei, X., & Xu, S. (2002). The research of 10-hydroxy-2-decenoic acid on experiment hyperlipoidemic rat. Zhong Yao Cai = Zhongyaocai = Journal of Chinese Medicinal Materials, 25(5), 346–347. http://www.ncbi.nlm.nih.gov/pubmed /12583195. Yang, X.-Y., Yang, D., Wei-Zhang, Wang, J.-M., Li, C.-Y., Hui-Ye, Lei, K.-F., Chen, X.-F., Shen, N.-H., Jin, L.-Q., & Wang, J.-G. (2010). 10-Hydroxy-2-decenoic acid from Royal jelly: a potential medicine for RA. Journal of Ethnopharmacology, 128(2), 314–321. Doi: 10.1016/j.jep.2010.01.055. Yang, Y. C., Chou, W. M., Widowati, D. A., Lin, I. P., & Peng, C. C. (2018). 10-Hydroxy-2Decenoic Acid of Royal Jelly Exhibits Bactericide and Anti-Inflammatory Activity in Human Colon Cancer Cells. BMC Complementary and Alternative Medicine, 18(1), 1–7. https://doi.org/10.1186/s12906-018-2267-9 Yao, Q. H., Zhang, X. C., Fu, T., Gu, J. Z., Wang, L., Wang, Y., Lai, Y. B., Wang, Y. Q., & Guo, Y. (2014). ω-3 polyunsaturated fatty acids inhibit the proliferation of the lung adenocarcinoma cell line A549 in vitro. Molecular Medicine Reports, 9(2), 401–406. https://doi.org/10.3892/mmr.2013.1829 Yoshida, M., Hayashi, K., Watadani, R., Okano, Y., Tanimura, K., Kotoh, J., Sasaki, D., Matsumoto, K., & Maeda, A. (2017). Royal jelly improves hyperglycemia in obese/ diabetic KK-Ay mice. Journal of Veterinary Medical Science, 79(2), 299–307. https:// doi.org/10.1292/jvms.16-0458 Yoshimoto, N., Iwata, Y., Numata, S., Saito, K., Iwata, T., Arima, M., Shima, H., Tahara, S., Kuroda, M., & Sugiura, K. (2018). Recurrent cutaneous Rosai-Dorfman disease. European Journal of Dermatology, 28(4), 562–563. https://doi.org/10.1684/ ejd.2018.3348 You, M., Miao, Z., Pan, Y., & Hu, F. (2019). Trans-10-hydroxy-2-decenoic acid alleviates LPS-induced blood-brain barrier dysfunction by activating the AMPK/PI3K/AKT pathway. European Journal of Pharmacology, 865(January). https://doi.org/10.1016/ j.ejphar.2019.172736 You, M., Miao, Z., Tian, J., & Hu, F. (2020). Trans-10-hydroxy-2-decenoic acid protects against LPS-induced neuroinflammation through FOXO1-mediated activation of autophagy. European Journal of Nutrition, 59(7), 2875–2892. https://doi.org/ 10.1007/s00394-019-02128-9 Zhang, J., Tang, H., Deng, R., Wang, N., Zhang, Y., Wang, Y., Liu, Y., Li, F., Wang, X., & Zhou, L. (2015). Berberine suppresses adipocyte differentiation via decreasing CREB transcriptional activity. PLoS ONE, 10(4), 1–16. https://doi.org/10.1371/journal. pone.0125667 Zhang, L., Fu, L., Zhang, S., Zhang, J., Zhao, Y., Zheng, Y., He, G., Yang, S., Ouyang, L., & Liu, B. (2017). Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chemical Science, 8(4), 2687–2701. https://doi.org/10.1039/C6SC05368H Zhang, S., Nie, H., Shao, Q., Hassanyar, A. kalan, & Su, S. (2017). RNA-Seq analysis on effects of royal jelly on tumour growth in 4T1-bearing mice. Journal of Functional Foods, 36, 459–466. Doi: 10.1016/j.jff.2017.07.010. Zheng, X., Zhou, F., Gu, Y., Duan, X., & Mo, A. (2017). Effect of Different Titanium Surfaces on Maturation of Murine Bone Marrow-Derived Dendritic Cells. Scientific Reports, 7(February), 1–9. https://doi.org/10.1038/srep41945 14