91 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 NEW INEQUALITIES FOR CONVEX FUNCTIONS KONVEKS FONKSİYONLAR İÇİN YENİ EŞİTSİZLİKLER Mevlüt TUNÇ1* ve S. Uğur KIRMACI2 1 Kilis 2 7 Aralık Üniversitesi, Fen Edebiyat Fakültesi Matematik Bölümü, Kilis Atatürk Üniversitesi, KKEF, Matematik Eğitimi A.B.D., 25240, Erzurum Geliş Tarihi: 28 Nisan 2010 Kabul Tarihi: 25 Mayıs 2010 ABSTRACT In the present paper we establish some new integral inequalities analogous to the well known Hadamard's inequality by using a fairly elementary analysis. ÖZET Bu makalede biz temel analiz işlemlerini kullanarak literatürde iyi bilinen Hadamard eşitsizliğine benzer yeni integral eşitsizlikleri kurduk. Key Words: Hadamard's inequality, convex function, concave function, special means. 1.INTRODUCTION The following inequality [see Dragomir, (1992)] b f ( a ) + f (b ) 1 ⎛a+b⎞ ≤ f⎜ f ( x ) dx ≤ ⎟ ∫ 2 ⎝ 2 ⎠ b−a a (1.1) Which holds for all convex functions f : [ a , b ] → is known in the literature as Hadamard's inequality. Since its discovery in 1893, Hadamard's inequality [see Hadamard, (1893)] has been proven to be one of the most useful inequalities in mathematical analysis. A number of papers have been written on this inequality providing new proofs, noteworthy extensions, generalizations and numerous * Sorumlu Yazar: [email protected] 92 Tunç & Kırmacı applications, see the references cited therein. The main purpose of this paper is to establish some new integral inequalities analogous to that of Hadamard's inequality given in (1.1) involving two convex functions. The analysis used in the proof is elementary. 2. MAIN RESULT We need the following Lemma proved in [see, Pecaric and Dragomir, 104pp, (1991) ] which deals with the simple characterization of convex functions. Lemma A: The following statements are equivalent to a mapping: f : [a, b ] → ; i) f is convex on [ a, b ] , [ a, b ] ii) for all x, y in the mapping g : [ 0,1] → , defined by g ( t ) = f ( tx + (1 − t ) y ) is convex on [ 0,1] . For the proof of this Lemma, see [Pecaric and Dragomir, 104pp, (1991)]. Our main result is given in the following theorem. f : [a, b ] → Theorem 2.1: Let be a nonnegative and convex function. Then one has the inequality: 2 f (a) (b − a ) b 2 ∫ ( b − x ) f ( x ) dx + a b 1 ≤ f 2 ( x) b − a ∫a 2 f (b ) b ( x − a ) f ( x ) dx 2 ( b − a ) ∫a M ( a, b ) dx + where M ( a, b ) = f (2.1) 3 ( a ) + f ( a ) f (b) + f 2 (b) . Proof: Since f is a convex function on [ a, b ] , then we have that f ( ta + (1 − t ) b ) ≤ tf ( a ) + (1 − t ) f ( b ) 2 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 93 New Inequalıtıes For Convex Functıons for t ∈ [ 0,1] . all Using the elementary inequality G ( a, b ) ≤ A ( a, b ) , 0 ≤ a, b , we can conclude that { } 2 tf ( a ) f ( ta + (1 − t ) b ) + (1 − t ) f ( b ) f ( ta + (1 − t ) b ) ≤ f 2 ( ta + (1 − t ) b ) + t 2 f 2 ( a ) + 2t (1 − t ) f ( a ) f ( b ) + (1 − t ) f 2 ( b ) 2 ( ) By the Lemma A f ta + (1 − t ) b is convex on [ 0,1] , it is integrable on [ 0,1] . Integrating both sides of the above inequality over t on [0,1] we get 1 1 2 f ( a ) ∫ tf ( ta + (1 − t ) b ) dt + 2 f ( b ) ∫ (1 − t ) f ( ta + (1 − t ) b ) dt 0 0 1 1 ≤ ∫ f 2 ( ta + (1 − t ) b ) dt + f 2 ( a ) ∫ t 2 dt 0 0 1 + 2 f ( a ) f ( b ) ∫ t (1 − t ) dt + f 0 1 2 ( b ) ∫ (1 − t ) 2 dt 0 By substituting x = ta + (1 − t ) b , it is easy to observe that 1 ∫ tf ( ta + (1 − t ) b ) dt 0 1 x −b 1 = f ( x ) dx = 2 ∫ b−a a a −b (b − a ) b b ∫ ( b − x ) f ( x ) dx a and 1 ∫ (1 − t ) f ( ta + (1 − t ) b ) dt 0 1 a−x 1 = f ( x ) dx = 2 ∫ b−a a a−b (b − a ) b b ∫ ( x − a ) f ( x ) dx a EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 94 Tunç & Kırmacı It can be easily checked that 1 1 1 2 2 ∫0 t dt = ∫0 (1 − t ) dt = 3 , 1 ∫ f 2 ( ta + (1 − t ) b ) dt = 0 1 1 ∫ t (1 − t ) dt = 6 0 b 1 f 2 ( x ) dx ∫ b−a a When above equalities are taken into account, the proof is complete. Teorem 2.2: Let f : [ a , b ] → be a nonnegative and convex function. Then one has the inequality: 1 1 ⎛a+b⎞ f ( x ) dx ≤ f ⎜ ⎟ ∫ b−a a 2 ⎝ 2 ⎠ b b N ( a, b ) 1 f 2 ( x ) dx + + ∫ ⎛a+b⎞ ⎛a+b⎞ a 4f ⎜ 24 f ⎜ ⎟ (b − a ) ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ where N ( a, b ) = f 2 ( a ) + 4 f ( a ) f ( b ) + f 2 ( b ) . (2.2) Proof: Since f is a convex function on [ a, b ] , then we have that ⎛ ta + (1 − t ) b (1 − t ) a + tb ⎞ ⎛ a+b⎞ f⎜ + ⎟ ⎟= f ⎜ 2 2 ⎝ 2 ⎠ ⎝ ⎠ f ( ta + (1 − t ) b ) + f ( (1 − t ) a + tb ) ≤ 2 for all t ∈ [ 0,1] . Similarly as explained in the proof of inequality (2.1) given above, we obtain EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 95 New Inequalıtıes For Convex Functıons ⎛ a+b⎞ ⎛ a+b⎞ f⎜ ⎟ f ( ta + (1 − t ) b ) + f ⎜ ⎟ f ( (1 − t ) a + tb ) ⎝ 2 ⎠ ⎝ 2 ⎠ f 2 ( ta + (1 − t ) b ) 2⎛ a+b⎞ ≤ f ⎜ ⎟+ 4 ⎝ 2 ⎠ f ( ta + (1 − t ) b ) f ( (1 − t ) a + tb ) f 2 ( (1 − t ) a + tb ) + + 2 4 2 2 ⎛ a + b ⎞ f ( ta + (1 − t ) b ) + f ( (1 − t ) a + tb ) ≤ f2⎜ ⎟+ 4 ⎝ 2 ⎠ ⎡tf ( a ) + (1 − t ) f ( b ) ⎤⎦ ⎡⎣(1 − t ) f ( a ) + tf ( b ) ⎤⎦ +⎣ 2 2 2 ⎛ a + b ⎞ f ( ta + (1 − t ) b ) + f ( (1 − t ) a + tb ) = f2⎜ + ⎟ 4 ⎝ 2 ⎠ 2 t (1 − t ) ⎡⎣ f 2 ( a ) + f 2 ( b ) ⎤⎦ + ⎡t 2 + (1 − t ) ⎤ f ( a ) f ( b ) ⎣ ⎦ + 2 Likewise as explained in the proof of inequality (2.1) given above, we integrate both sides of the above inequality over t on [ 0,1] , we get ⎛ a+b⎞ ⎛ a+b⎞ f⎜ ⎟ ∫ f ( ta + (1 − t ) b ) dt + f ⎜ ⎟∫ f ⎝ 2 ⎠0 ⎝ 2 ⎠0 1 1 ( (1 − t ) a + tb ) dt 1 ⎛ a+b⎞ 2 2 ≤ f2⎜ ⎟ ∫ dt + ∫ f ( ta + (1 − t ) b ) + f ( (1 − t ) a + tb ) dt 2 4 ⎝ ⎠0 0 1 + 1 { } f 2 ( a ) + f 2 (b ) 1 f ( a ) f (b ) 1 2 2 1 t t dt t + (1 − t ) dt − + ( ) ∫ ∫ 2 2 0 0 ( ) By substituting ta + (1 − t ) b = x and (1 − t ) a + tb = y it can be easily obtained, 1 ∫ 0 1 f ( ta + (1 − t ) b ) dt = ∫ f 0 b ( (1 − t ) a + tb ) dt = b −1 a ∫ f ( x ) dx a 1 ∫ t (1 − t ) dt = 6 , ∫ ( t + (1 − t ) 1 1 2 0 0 2 ) dt = 32 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 96 Tunç & Kırmacı From the above equalities it is easily obtained that ⎛ a+b⎞ ⎛ a+b⎞ ⎛ a+b⎞ f⎜ f⎜ f⎜ ⎟1 ⎟1 ⎟1 ⎝ 2 ⎠ f x dx + ⎝ 2 ⎠ f x dx = 2 ⎝ 2 ⎠ f x dx ( ) ( ) ( ) b − a ∫0 b − a ∫0 b − a ∫0 1 f 2 ( a ) + f 2 (b ) f ( a ) f (b ) 1 ⎛ a+b⎞ 2 ≤ f2⎜ + + + f x dx ( ) ⎟ ∫ 12 3 ⎝ 2 ⎠ 2 (b − a ) 0 ⎛ a+b⎞ Now dividing both sides of the above inequality by 2 f ⎜ ⎟ we ⎝ 2 ⎠ get the desired inequality in (2.2). The proof is complete. Remark: If we choose a = 0 and b = 1 and the convex functions f ( x ) = x , then it is easy to observe that the inequalities obtained (2.1) and (2.2) are certain in the sense that we hold equalities in (2.1) and (2.2). Theorem 2.3: Let f : [a, b ] → be a nonnegative and convex function. Then b b 1 f ( tx + (1 − t ) y ) ( tf ( x ) + (1 − t ) f ( y ) ) dtdydx 2 ( b − a ) ∫a ∫a ∫0 2 ≤ b b 1 f ( tx + (1 − t ) y ) dtdydx (b − a ) ∫ ∫ ∫ 1 2 2 (2.3) a a 0 b ψ ( a, b ) 2 2 + + f x dx ( ) 3 ( b − a ) ∫a 12 where ψ ( a, b ) = f 2 ( a ) + 2 f ( a ) f ( b ) + f 2 ( b ) . Proof: Since f is a convex function on [ a, b ] , then we have that f ( tx + (1 − t ) y ) ≤ tf ( x ) + (1 − t ) f ( y ) for all x, y ∈ [ a, b ] and t ∈ [ 0,1] . Using the elementary inequality G ( a, b ) ≤ A ( a, b ) , 0 ≤ a, b , we get, EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 97 New Inequalıtıes For Convex Functıons 2 f ( tx + (1 − t ) y ) ( tf ( x ) + (1 − t ) f ( y ) ) ≤ f 2 ( tx + (1 − t ) y ) + t 2 f 2 ( x ) + 2t (1 − t ) f ( x ) f ( y ) + (1 − t ) f 2 ( y ) 2 As explained in the proof of inequality (2.1) given above, we integrate both sides of that above inequality over t on [ 0,1] , and we obtain 1 2 ∫ f ( tx + (1 − t ) y ) ( tf ( x ) + (1 − t ) f ( y ) ) dt 0 1 ≤∫ f 1 2 0 ( tx + (1 − t ) y ) dt + f ( x ) ∫ t dt 2 2 (2.3.1) 0 1 1 + 2 f ( x ) f ( y ) ∫ t (1 − t ) dt + f 2 ( y ) ∫ (1 − t ) dt 2 0 0 1 = ∫ f 2 ( tx + (1 − t ) y ) dt + 0 1 2 1 1 f ( x) + f ( x) f ( y) + f 2 ( y) 3 3 3 Integrating both sides of that above inequality (2.3.1) over x and y on [ a, b ] we obtain 2 b b 1 2 ∫ ∫ ∫ f ( tx + (1 − t ) y ) ( tf ( x ) + (1 − t ) f ( y ) ) dtdydx a a 0 b b 1 ≤ ∫ ∫ ∫ f 2 ( tx + (1 − t ) y ) dtdydx a a 0 b b b b b b 1 1 1 + ∫ ∫ f 2 ( x ) dydx + ∫ ∫ f ( x ) f ( y ) dydx + ∫ ∫ f 2 ( y ) dydx 3aa 3aa 3aa (2.3.2) b b 1 ≤ ∫ ∫ ∫ f 2 ( tx + (1 − t ) y ) dtdydx a a 0 + b b 2 (b − a ) b 2 1 f x dx f x dx + ( ) ( ) ∫a ∫a f ( y ) dy 3 3 ∫a By using the right half of the Hadamard's inequality given in (1.1) on the right side of (2.3.2) we write EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 98 Tunç & Kırmacı b b 1 2 ∫ ∫ ∫ f ( tx + (1 − t ) y ) ( tf ( x ) + (1 − t ) f ( y ) ) dtdydx a a 0 b b 1 ≤ ∫∫∫ a a 0 2 (b − a ) b 2 f ( tx + (1 − t ) y ) dtdydx + ∫a f ( x ) dx 3 2 1 f ( a ) + f (b) f ( a ) + f (b) 2 (b − a ) 3 2 2 b b 1 2 (b − a ) b 2 = ∫ ∫ ∫ f 2 ( tx + (1 − t ) y ) dtdydx + f ( x ) dx ∫ 3 a a 0 a + + 1 2 f 2 ( a ) + 2 f ( a ) f (b ) + f 2 (b )) (b − a ) ( 12 Now multiplying both sides of the above inequality by 1 ( b − a ) we 2 get desired inequality in (2.3). The proof is complete. Theorem 2.4: Let f : [a, b ] → be a nonnegative and convex function. Then b 1 2 b − a ∫a ∫0 a + b ⎞⎛ ⎛ f ⎜ tx + (1 − t ) ⎟ tf ( x ) + (1 − t ) 2 ⎠ ⎜⎝ ⎝ ⎛ a + b ⎞⎞ f⎜ ⎟ ⎟ dtdx ⎝ 2 ⎠⎠ ψ ( a, b ) 1 a+b⎞ ⎛ f 2 ⎜ tx + (1 − t ) ≤ (b − a + 2) ⎟ dtdx + ∫ ∫ 2 ⎠ 12 b−a a 0 ⎝ b 1 where ψ ( a, b ) = f 2 ( a ) + 2 f ( a ) f ( b ) + f 2 ( b ) . Proof: Since f is a convex function on [ a, b ] , then we have that a+b⎞ ⎛ ⎛ a+b⎞ f ⎜ tx + (1 − t ) ⎟ ≤ tf ( x ) + (1 − t ) f ⎜ ⎟ 2 ⎠ ⎝ ⎝ 2 ⎠ for all x, y ∈ [ a, b ] and t ∈ [ 0,1] , we get a + b ⎞⎛ ⎛ 2 f ⎜ tx + (1 − t ) ⎟ tf ( x ) + (1 − t ) 2 ⎠ ⎜⎝ ⎝ ⎛ a + b ⎞⎞ f⎜ ⎟⎟ ⎝ 2 ⎠⎠ a+b⎞ 2 2 ⎛ ≤ f 2 ⎜ tx + (1 − t ) ⎟ + t f ( x) 2 ⎠ ⎝ 2 ⎛ a+b⎞ 2⎛ a+b⎞ + 2t (1 − t ) f ( x ) f ⎜ ⎟ + (1 − t ) f ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 (2.4) 99 New Inequalıtıes For Convex Functıons As explained in the proof of inequality (2.1) given above, we integrate both sides of that above inequality over t on [ 0,1] , and we obtain a + b ⎞⎛ ⎛ 2∫ f ⎜ tx + (1 − t ) ⎟ tf ( x ) + (1 − t ) 2 ⎠ ⎜⎝ ⎝ 0 1 ⎛ a + b ⎞⎞ f⎜ ⎟ ⎟ dt ⎝ 2 ⎠⎠ a+b⎞ ⎛ 2 2 ≤ ∫ f 2 ⎜ tx + (1 − t ) ⎟ dt + f ( x ) ∫ t dt 2 ⎠ ⎝ 0 0 1 1 (2.4.1) 2 ⎛ a+b⎞ 2⎛ a+b⎞ +2f ⎜ ⎟ f ( x ) ∫ t (1 − t ) dt + f ⎜ ⎟ ∫ (1 − t ) dt ⎝ 2 ⎠ ⎝ 2 ⎠0 0 1 1 1 2 1 ⎛ a+b⎞ 1 2⎛ a+b⎞ a+b⎞ ⎛ = ∫ f 2 ⎜ tx + (1 − t ) ⎟ dt + f ( x ) + f ⎜ ⎟ f ( x) + f ⎜ ⎟ 2 3 3 2 3 ⎝ 2 ⎠ ⎝ ⎠ ⎝ ⎠ 0 As explained in the proof of inequality (2.3) given above, integrating 1 both sides of that above inequality (2.4.1) over x on [ a, b ] , and using the right half of the Hadamard's inequality given in (1.1) and convexity of f we obtain a + b ⎞⎛ ⎛ 2 ∫ ∫ f ⎜ tx + (1 − t ) ⎟ tf ( x ) + (1 − t ) 2 ⎠ ⎜⎝ ⎝ a 0 b 1 ⎛ a + b ⎞⎞ f⎜ ⎟ ⎟ dtdx ⎝ 2 ⎠⎠ a+b⎞ ⎛ ≤ ∫ ∫ f 2 ⎜ tx + (1 − t ) ⎟ dtdx 2 ⎠ ⎝ a 0 b 1 (b − a ) f 2 ⎛ a + b ⎞ 1 1 ⎛a+b⎞ + ∫ f 2 ( x ) dx + f ⎜ ⎟ ∫ f ( x ) dx + ⎜ ⎟ 3a 3 ⎝ 2 ⎠a 3 ⎝ 2 ⎠ b b a+b⎞ ⎛ ≤ ∫ ∫ f 2 ⎜ tx + (1 − t ) ⎟ dtdx 2 ⎠ ⎝ a 0 b 1 1 2 ⎛ f ( a ) + f (b ) ⎞ + (b − a ) ⎜ ⎟ 3 2 ⎝ ⎠ 2 f ( a ) + f (b ) (b − a ) ⎛ f ( a ) + f (b ) ⎞ 1 f ( a ) + f (b ) + + (b − a ) ⎜ ⎟ 3 2 2 3 ⎝ 2 ⎠ 2 a+b⎞ ⎛ = ∫ ∫ f 2 ⎜ tx + (1 − t ) ⎟ dtdx 2 ⎠ ⎝ a 0 b 1 + ψ ( a, b ) 12 ((b − a ) 2 + (b − a ) + (b − a ) ) (2.4.2) EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 100 Tunç & Kırmacı Now dividing both sides of (2.4.2) by ( b − a ) and rewriting (2.4.2) we get the required inequality in (2.4). The proof is complete. 3. APPLICATIONS FOR SPECIAL MEANS As in [Kırmacı, 2004], we shall consider the means as arbitrary real numbers a, b, a ≠ b . In the resources there includes A ( a, b ) = a+b , 2 a, b ∈ + (arithmetic mean) a 2 + b2 , a, b ∈ + (quadratic mean) 2 b−a L ( a, b ) = a ≠ b , ab ≠ 0, a, b ∈ + , ln b − ln a K ( a, b ) = (logarithmic mean) G ( a, b ) = ab , a, b ∈ + (geometric mean). Now, using the results of Section 2, we illustrate some applications of special means of real numbers. Proposition 3.1: Let 0 < a < b . Then one has the inequality, 4 A ( a , b ) 2 K 2 ( a , b ) 10 ≤ + L ( a, b ) 3 G 2 ( a, b ) 3 Proof: The proof is immediate from Theorem 2.1 as applied for 1 and the details are omitted. x Proposition 3.2: Let 0 < a < b . Then one has the inequality, A ( a, b ) ( 2 K 2 ( a, b ) + 4G 2 ( a, b ) ) A ( a, b ) 1 1 ≤ + + L ( a, b ) 2 A ( a, b ) 4G 2 ( a, b ) 24G 2 ( a, b ) f ( x) = Proof: The assertion follows from Theorem 2.2 as applied to f ( x) = 1 and the details are omitted. x EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101 101 New Inequalıtıes For Convex Functıons REFERENCES Dragomir, S.S. (1992) Two mappings in connection to Hadamard's inequalities, J.Math.Anal.Appl. 167, 49-56. Hadamard, J. (1893).Etude sur les properties des fonctions entieres et en particulier d'une fonction consideree par Riemann, J.Math.Pures appl. 58, 171-215. Heing, H.P., Maligranda, L. (1991/92) Chebyshev inequality in function spaces, Real Analysis Exchange 17, 211-47. Kırmacı, U.S. (2004). Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math.Comput. 147, 137—146. Maligranda, L., Pecaric, J.E. and Persson, L.E. (1994). On some inequalities of the Gruss-Barnes and Borell type, J.Math.Ana.Appl. 187, 306–323. Mitrinovic, D.S. Analytic Inequalities, Springer-Verlag, Berlin, New York 1970. Pachpatte, B.G. (2003). On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6(E) Pecaric, J.E., Dragomir, S.S. (1991). A generalization of Hadamard's inequality for Isotonic linear functionals, Radovi Matematicki 7, 103107. **** EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl: 2010 91-101