Turkish Journal of Botany Turk J Bot (2015) 39: 982-987 © TÜBİTAK doi:10.3906/bot-1502-35 http://journals.tubitak.gov.tr/botany/ Research Article Development of AFLP markers associated with zucchini yellow mosaic virus resistance in cucumber (Cucumis sativus L.) 1,* 1 1 2 Hasan Özgür ŞIĞVA , Ahmet Fikret FIRAT , Gülden HAZARHUN , Ahmet İPEK 1 May-Agro Seed Corp., Bursa, Turkey 2 Department of Horticulture, Faculty of Agriculture, Uludağ University, Görükle Campus, Bursa, Turkey Received: 17.02.2015 Accepted/Published Online: 19.10.2015 Printed: 21.12.2015 Abstract: Zucchini yellow mosaic virus (ZYMV) is one of the most important pathogens that cause significant yield losses in many cucurbit crops including cucumber (Cucumis sativus L). ZYMV resistance in cucumber is inherited by a single recessive gene. The purpose of this study was to identify molecular markers linked to the gene conferring ZYMV resistance in cucumber. We developed a population of 188 F2 plants derived from inbred cucumber lines. Individual F2 plants were self-pollinated to generate F3 populations. Ten randomly selected plants from each F3 population were tested for ZYMV resistance. We used a bulk segregant analysis method to identify putative molecular markers linked to ZYMV resistance. Using bulked DNA samples with parental lines and F1, a total of 170 sequence-related amplified polymorphism (SRAP), 586 simple sequence repeat (SSR), and 308 amplified fragment length polymorphism (AFLP) primer combinations were screened. Neither polymorphic SRAP nor SSR markers were linked with ZYMV resistance. Among the 308 AFLP primer combinations tested, an AFLP marker in the E-ACA/MCA primer combination showed significant association among parental lines, F1, and resistant and susceptible plants. The combination of E-ACA/M-CA was achieved on parental lines, F1, and 188 F2 individuals for confirmation of the marker segregation on the F2 population. We found that the combination of E-ACA/M-CA was linked to the zym locus with 6.91 cM. Key words: Cucumber, Cucumis sativus L., zucchini yellow mosaic virus, molecular markers, AFLP, SSR, SRAP 1. Introduction Zucchini yellow mosaic virus (ZYMV) is one of the aphidborne viruses that was discovered in southern Europe 30 years ago (Gal-On, 2007; Amano et al., 2013). It is a member of the family Potyviridae and genus Potyvirus (Regenmortel et al., 2000). ZYMV is an important virus that causes significant damage and losses in cucumber yields (Provvidenti et al., 1984; Yuki et al., 2000; Park et al., 2004; Amano et al., 2013). This virus is transported from plant to plant by aphids. Especially in the late summer and early fall, aphid populations are increased due to favorable environmental conditions, and therefore virus epidemics in these seasons can be promoted (Kosaka et al., 2006; Amano et al., 2013). Due to the limitations in chemical, biological, and other plant protection methods for viral diseases in greenhouse cultivation, the most important plant protection method is to generate virusresistant cucumber cultivars. In cucumber, inheritance of the ZYMV-resistant trait has been characterized and derived from TMG-1 (Taichung-Mou-Gua) and Dina-1 (Dina). Both TMG-1 and Dina-1 inherited a recessive allele at a single locus, zymTMG-1 and zymDina-1 *Correspondence: [email protected] 982 (Providenti, 1987; Abul-Hayja and Al-Shahwan, 1991; Kabelka et al., 1997; Park et al., 2004; Amano et al., 2013). Transfer of the recessive resistance gene into susceptible cultivars is time-consuming, laborious, and costly, and the only way to overcome these problems is the use of molecular markers. Park et al. (2004) developed sequence characterized amplified region (SCAR) and cleaved amplified polymorphic sequence (CAPS) markers that were linked to the zym locus. However, these markers may not segregate in all resistant and susceptible lines, making them unusable for marker-assisted selection. Recently, Amano et al. (2013) also developed both CAPS-T86C and dCAPS-G99A molecular markers that were linked to the zym locus. Many simple sequence repeat (SSR) and sequencerelated amplified polymorphism (SRAP) markers have been developed and used for the development of highdensity genetic maps and for whole-genome analysis and identification of candidate genes for the important traits in cucumber (Li and Quiros, 2001; Ferriol et al., 2003; Yeboah et al., 2007; Fukino et al., 2008; Watcharawongpaiboon and Chunwongse, 2008; Hu et al., 2010; Li et al., 2011; Meng et ŞIĞVA et al. / Turk J Bot al., 2012; Amano et al., 2013). Several amplified fragment length polymorphism (AFLP) primer combinations were also used for wide genome analysis and identification of candidate genes in cucumber (Park et al., 2000; Witkowicz et al., 2003; Bae et al., 2006). The purpose of this study was to determine additional molecular markers linked to the ZYMV resistance gene in cucumber (Cucumis sativus L.) using SRAP, SSR, and AFLP markers. 2. Materials and methods 2.1. Plant material In order to develop mapping populations, a ZYMVresistant inbred line, BTL_HTP_1, and a susceptible inbred line, BTL_HTP_2, were used as parental lines. These parental lines were obtained from the May-Agro Seed Corp. cucumber breeding program. Both resistance and susceptibility of parental lines to ZYMV were assessed using pathogenicity tests (Yardımcı and Korkmaz, 2004). A single resistant plant from BTL_HTP_1 as a female and a single susceptible plant from BTL_HTP_2 as a male were crossed to generate F1. Single susceptible F1 plants were self-pollinated to generate an F2 population with 188 plants. Each F2 plant was self-pollinated to develop 188 F3 populations. Ten plants from each F3 population were tested for resistance to ZYMV to determine the genotypes of the F2 plants. 2.2. Virus maintenance, storage, inoculation, and detection procedure ZYMV virus inoculants were tested and stored at –80 °C in a freezer (Thermo Scientific REVCO Value Series, Waltham, MA, USA) until use at May-Agro Seed Corp. ZYMV virus inoculum was prepared by grinding infected cucumber leaves according to Yardımcı and Korkmaz (2004). To determine the genotype of F2 plants, 10 randomly selected plants from each F3 population were planted in a mixture of 70% peat and 30% perlite. Ten days after planting, carborundum-dusted cotyledons of 10-dayold seedlings were mechanically inoculated by a sponge dipped in inoculum solution. After inoculation, all of the inoculated plants were kept in a growth chamber for one night under high humidity (85%–90%) and transferred to a greenhouse the next day. All plant materials were kept at 25 °C with a 16/8 h light/dark photoperiod. Two weeks after inoculation, all of the inoculated plants were scored as 1: no symptoms, 3: slight mosaic limited to lower leaves, 5: clear mosaic on lower leaves and slight mosaic on upper leaves, 7: moderate mosaic on upper leaves, or 9: severe mosaic on all leaves. Parental lines were included in the analysis as resistant and susceptible controls. After the calculation of disease severity index (DI = Σ[(s × n)/(S × N)] × 100, where s = disease rating scale, n = number of plants with each disease rating, N = total number of plants, S = highest disease rating scale), scores of 3.0 or less were considered as resistant and scores greater than 7.0 were considered as susceptible. Results between 3.0 and 7.0 were considered as heterozygous genotypes. After morphological evaluation, ZYMV virus detection was performed using double-antibody sandwich enzymelinked immunosorbent assay (DAS-ELISA) methods developed by Clark and Adams (1977). DAS-ELISA was carried out according to the manufacturer’s protocol (Agdia Inc., Elkhart, IN, USA). All of the measurements were performed at 405 nm wavelength in an ELx808 microplate absorbance plate reader (BioTek Instruments Inc., Winooski, VT, USA). Healthy plants (as a control), a negative control, a positive control, and buffer were used for every test. All samples were regarded as positive if the measurement was more than twice that of the control healthy plants. One month after this measurement, all analyses were replicated for a double-check. 2.3. Molecular analysis 2.3.1. DNA isolation All of the DNA was isolated from leaves of the plants at the 3–4 true leaf stage with the DNeasy Plant Mini Kit (QIAGEN, Limburg, Netherlands) using the manufacturer’s protocol. DNA concentrations of all samples were measured quantitatively and qualitatively with a spectrophotometer (Eppendorf Biophotometer Plus, Hamburg, Germany) at A230, A260, and A280 wavelengths. The isolated DNAs were stored at –20 °C. 2.3.2. SRAP analysis A total of 17 forward (ME) and 10 reverse (EM) previously tested SRAP primers were selected for genotyping analysis (Li et al., 2001; Ferriol et al., 2003; Yeboah et al., 2007; Meng et al., 2012). PCR amplification of DNA with ME and EM primer combinations was carried out according to the protocol described by Ferriol et al. (2003). Each PCR reaction of 25 µL contained 1X PCR buffer, approximately 50 ng of template DNA, 0.3 µM of each forward and reverse primer, 200 µM dNTP, 1.5 mM MgCl2, and 1 U of Taq DNA polymerase (Fisher Scientific, Pittsburgh, PA, USA). All PCR amplifications were carried out using a C-1000 thermal cycler (Bio-Rad Inc., Hercules, CA, USA) and the following thermal cycling conditions: 5 min at 94 °C; 5 cycles of 1 min at 94 °C, 1 min at 35 °C, and 2 min at 72 °C; and 30 cycles of 1 min at 94 °C, 1 min at 50 °C, 5 min at 72 °C. The PCR products were fractionated on 3% Super Fine Resolution (SFR) agarose gel, stained with EtBr, and visualized on a gel documentation system (BioRad Inc.). All SRAP primer combinations are given in Supplementary Table 1 (on the journal’s website). 2.3.3. SSR analysis A total of 586 previously developed primers of SSR markers were selected for genotyping analysis (Watcharawongpaiboon and Chunwongse, 2007; Fukino 983 ŞIĞVA et al. / Turk J Bot et al., 2008; Hu et al., 2010). Each PCR reaction contained 1X reaction buffer, approximately 50 ng of template DNA, 0.5 µM of each forward and reverse primer, 200 µM of each dNTP, 1.5 mM MgCl2, and 1 U of Taq DNA polymerase (Fisher Scientific). All PCR amplifications were carried out in a C-1000 thermal cycler (Bio-Rad Inc.) using the following thermal cycling conditions: 3 min of initial denaturation at 94 °C; 36 cycles of 30 s of denaturing, 45 s of annealing at 50–60 °C, and 1 min of elongation at 72 °C; and a final elongation step of 5 min at 72 °C. The PCR products were fractionated on 3% SFR agarose gel and stained with EtBr. PCR products were visualized on a gel documentation system (Bio-Rad Inc.). All SSR primer sequence information is given in Supplementary Table 2 (on the journal’s website). 2.3.4. AFLP analysis AFLP analysis was carried out according to the protocol described by Vos et al. (1995) with the modifications of Park et al. (2000). A total of 308 primer combinations were selected for genotyping analysis. All AFLP primer combinations are given in Supplementary Table 3 (on the journal’s website). AFLP products were visualized on the 4300L DNA Analysis System (LI-COR Inc., Lincoln, NE, USA). 2.3.5. Bulk segregant analysis Bulk segregant analysis was performed with the protocol described by Michelmore et al. (1991). The genotypes of all F2 plants were determined via pathogenicity test as susceptible, resistant, and heterozygous. DNA from 20 homozygous susceptible (BS-1 and BS-2) and 20 homozygous resistant (BR-1 and BR-2) plants was pooled for preparation of ZYMV-susceptible and ZYMVresistant bulks, respectively. In total, 170 SRAP primer combinations, 586 SSR primers, and 308 AFLP primer combinations were selected for genotypic screening in order to find any polymorphisms between susceptible and resistant bulk groups as well as the resistant parent BTL_HTP_1, the susceptible parent BTL_HTP_2, and F1. Polymorphic primer combinations were used on all F2 progenies and compared with phenotypic data to calculate the distance between the zym locus and the candidate marker. 3. Results 3.1. Phenotypic and serological analysis of ZYMV Two weeks after ZYMV inoculation, all of the inoculated plants were scored with resistant and susceptible parental lines. After calculation of the disease severity index, 3.0 or less was considered as resistant and greater than 7.0 was considered as susceptible. Between 3.0 and 7.0 was considered as still segregating. Healthy plants and plants with slight and severe mosaic symptoms are shown in Figures 1a–1c. According to phenotypic observation 984 results in F3 populations, 39 F2 plants were homozygous resistant, 52 F2 plants were homozygous susceptible, and 97 F2 plants were heterozygous. According to DAS-ELISA analysis, 46 F2 plants were resistant homozygous, 51 F2 plants were susceptible homozygous, and 91 F2 plants were heterozygous. According to the chi-square test, phenotypic and DAS-ELISA results fit a genetic segregation ratio of 1:2:1, confirming the previous results that ZYMV resistance was inherited by a single recessive gene (Providenti, 1987; Kabelka et al., 1997; Park et al., 2004; Amano et al., 2013). Phenotypic and serological analyses of ZYMV resistance in the F2 population are shown in Table 1. 3.2. Molecular analysis 3.2.1. Bulk segregant analysis After phenotypic and serological analysis, all of the F2 genotypes were determined as susceptible, resistant, or heterozygous. DNA from 20 homozygous susceptible (BS1 and BS-2) and 20 homozygous resistant (BR-1 and BR-2) plants was pooled for preparation of ZYMV-susceptible and ZYMV-resistant bulks, respectively. 3.2.2. SRAP analysis A total of 170 SRAP primer combinations were screened using resistant and susceptible parental lines with F1 and resistant and susceptible bulk DNA samples. There were 760 DNA bands amplified with 170 SRAP primer combinations. Approximately 8.95% (68) of these DNA bands were polymorphic. However, none of these polymorphic SRAP markers were linked to ZYMV resistance. 3.2.3. SSR analysis A total of 586 SSR markers were also screened using resistant and susceptible parental lines with F1 and resistant and susceptible bulk DNA samples. Among the 586 SSR markers, only 52 SSR markers (8.87%) were polymorphic and there was no correlation between ZYMV resistance and polymorphic SSR markers. 3.2.4. AFLP analysis A total of 308 AFLP primer combinations were screened using the same DNA samples. Among the 308 AFLP primer combinations tested, the combination of E-ACA/ M-CA showed expected segregation on both parental lines, F1, and bulk groups. AFLP primer combinations of E-ACA/M-CA are shown in Figure 2 with their segregation on the parental lines, F1, and bulk groups. The E-ACA/MCA primer combination was tested on parental lines, F1, and 188 F2 individuals in order to calculate the genetic distance between the marker and the zym locus. We found that the combination of E-ACA/M-CA showed 93.08% correlation with phenotypic data. We thought that the combination of E-ACA/M-CA was linked to the zym locus with a distance of 6.91 cM. ŞIĞVA et al. / Turk J Bot a b c Figure 1. Healthy plants (a) and plants with slight mosaic (b) and severe mosaic (c) symptoms on cucumber leaves. Table 1. Phenotypic and serological analysis of ZYMV resistance in F2 population. Number of observed plants Population Total plants F2:3 (phenotypic observation) F2:3 (DAS-ELISA results) Positive Expected ratio χ2 97 52 1:2:1 0.369 91 51 1:2:1 0.795 Negative Negative/ positive 188 39 188 46 4. Discussion ZYMV is one of the most important virus diseases in cucumber. It causes significant amounts of yield loss in greenhouse cultivation (Provvidenti et al., 1984). ZYMVresistant cucumber cultivars have been developed by using conventional breeding methods. Pathogenicity testing in conventional breeding is time-consuming, laborious, and more expensive. In addition, pathogenicity testing can easily be affected by the environment. Due to the recessive inheritance of the zym locus in cucumber, test crosses are required after every backcross of conventional breeding in order to determine the progeny carrying the recessive resistance gene (Purcifull et al., 1984; Amano et al., 2013). Therefore, development of DNA-based molecular markers and use of them in marker-assisted selection breeding is critical to increase efficiency of ZYMV-resistant breeding in cucumber. In marker development studies, it is necessary to characterize phenotypes of the segregating population. In our study, out of 188 F2 plants, 39 were homozygous resistant, 97 were heterozygous, and 52 were homozygous susceptible in phenotypic observation; however, in DAS- 985 ŞIĞVA et al. / Turk J Bot Figure 2. Polyacrylamide gel showing amplicons. M, male; F, female; F1, from BR1 to BR6 and from BS1 to BS6 screening with E-ACA/M-CA. ELISA analysis, 46 were homozygous resistant, 91 were heterozygous, and 51 were homozygous susceptible. This discrepancy between phenotypic and DAS-ELISA results is probably due to the sensitivity of the DAS-ELISA method compared to phenotypic observation. ZYMV is inherited by a recessive allele at a single locus, zymTMG-1 and zymDina-1 (Kabelka et al., 1997; Park et al., 2004; Amano et al., 2013). According to our phenotypic evaluation results, we confirmed that ZYMV resistance is conferred by a single recessive locus. Bulk segregant analysis is an effective and rapid procedure to identify the gene(s) of interest in segregating populations. This method has been used for both monogenic qualitative traits and quantitative trait loci (Michelmore et al., 1991; Collard et al., 2005). Besides, this method allows rapid and convenient molecular screening of the bulk groups. We developed an AFLP marker that linked to the zym locus in our cucumber breeding material with 6.91 cM. Park et al. (2004) developed a linked DNA-based molecular marker for the zym locus in cucumber. However, this marker did not segregate in any of our 42 inbred cucumber lines. Amano et al. (2013) also developed other CAPST86C and dCAPS-G99A CAPS markers derived from RFLP markers for the zym locus. In this study, the combination of E-ACA/M-CA was linked with the zym locus and showed the correct correlation of the F2 population with parental lines and F1. Because of some restrictions of AFLP methods, it is necessary to convert SCAR markers to use for markerassisted selection in breeding. This marker will be converted to a SCAR marker in a future study. Acknowledgments The authors would like to special thank Dr Geoffrey Lloyd Thomas for his valuable scientific support. This research was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK, project no. TEYDEP/3120013) and the May-Agro Seed Corporation. References Abul-Hayja Z, Al-Shahwan I (1991). Inheritance of resistance to zucchini yellow mosaic virus in cucumber. J Plant Dis Prot 98: 301–304. Amano M, Mochizuki A, Kawagoe Y, Iwahori K, Niwa K, Svoboda J, Maeda T, Imura Y (2013). High-resolution mapping of zym, a recessive gene for Zucchini yellow mosaic virus resistance in cucumber. Theor Appl Genet 126: 2983–2993. Fukino N, Yoshioka Y, Kubo N, Hirai M, Sugiyama M, Sakata Y, Matsumoto S (2008). Development of 101 novel SSR markers and construction of an SSR-based genetic linkage map in cucumber (Cucumis sativus L.). Breed Sci 58: 475–483. Gal-On A (2007). Zucchini yellow mosaic virus: insect transmission and pathogenicity—the tails of two proteins. Mol Plant Pathol 8: 139–150. Bae KM, Kwon YS, Cho IH, Yi SI (2006). Use of cDNA-AFLP for transcript profiling in narrow genetic pools; for example, cucumber (Cucumis sativus L.). Plant Breeding 125: 488–492. Hu J, Li J, Liang F, Liu L, Si S (2010). Genetic relationship of a cucumber germplasm collection revealed by newly developed EST-SSR markers. J Genet 3089: 28–32. Clark MF, Adams AN (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34: 475–483. Kabelka E, Ullah Z, Grumet R (1997). Multiple alleles for zucchini yellow mosaic virus resistance at the zym locus in cucumber. Theor App Genet 95: 997–1004. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142: 169–196. Kosaka Y, Song RB, Kobori T, Shiomi H, Yasuhara H, Kataoka M (2006). Effectiveness of an attenuated zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis 90: 67– 72. Ferriol M, Picó B, Nue F (2003). Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107: 271–282. Li G, Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in brassica. Theor Appl Genet 103: 455–461. 986 ŞIĞVA et al. / Turk J Bot Li Y, Yang L, Pathak M, Li D, He X, Weng Y (2011). Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123: 973–983. Meng H, Chen S, Cheng Z, Chai D, Li Y (2012). SRAP markers for fruit shape in cucumber. Pak J Bot 44: 1381–1384. Michelmore RW, Paran I, Kesseli RV (1991). Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. P Natl Acad Sci USA 88: 9828–9832. Regenmortel MH, Mayo MA, Fauquet CM, Maniloff J (2000). Virus nomenclature: consensus versus chaos. Arch Virol 145: 2227– 2232. Vos P, Hogers R, Bleeker M, Reijan M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414. Watcharawongpaiboon N, Chunwongse J (2008). Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus L). Plant Breed 127: 74–81. Park Y, Katzir N, Brotman Y, King J, Bertrand F, Havey M (2004). Comparative mapping of ZYMV resistance in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). Theor Appl Genet 109: 707–712. Witkowicz J, Urbańczyk-Wochniak E, Przybecki Z (2003). AFLP marker polymorphism in cucumber (Cucumis sativus L.) near isogenic lines differing in sex expression. Cell Mol Biol Lett 8: 375–381. Park YH, Sensoy S, Wye C, Antonise R, Peleman J, Havey MJ (2000). A genetic map of cucumber composed of RAPDs, RFLPs, AFLP markers and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43: 1003–1010. Yardımcı N, Korkmaz S (2004). Studies on spread and identification of zucchini yellow mosaic virus disease in the north-west Mediterranean region of Turkey by biological indexing and double-stranded RNA analysis. Plant Pathol J 3: 1–4. Provvidenti R (1987). Inheritance of resistance to a strain of zucchini yellow mosaic virus in cucumber. Hort Science 22: 102–103. Yeboah MA, Xuehao C, Feng CR, Liang G, Gu M (2007). A genetic map of cucumber (Cucumis sativus L.) combining SRAP and ISSR markers. Afr J Biotechnol 6: 2784–2791. Provvidenti R, Gonsalves D, Humaydan H (1984). Occurrence of zucchini yellow mosaic virus in cucurbits from Connecticut, New York, Florida, and California. Plant Dis 68: 443–446. Purcifull DE, Adlerz WC, Simone GW, Hiebert E, Christie SR (1984). Serological relationships and partial characterization of zucchini yellow mosaic virus isolated from squash in Florida. Plant Dis 68: 230–233. Yuki VA, Rezende JAM, Kitajima EW, Barroso PAV, Kuniyuki H, Groppo GA, Pavan MA (2000). Occurrence, distribution, and relative incidence of five viruses infecting cucurbits in the state of Sao Paulo. Plant Dis 84: 516–520. 987 ŞIĞVA et al. / Turk J Bot Supplementary Table 1. SRAP primer combinations used for SRAP screening of parental lines and F1, BR, and BS groups. Forward primers, sequence of primers (5’-3’) Reverse primers, sequence of primers (5’-3’) ME1 TGAGTCCAAACCGGATA EM1 GACTGCGTACGAATTAAT ME2 TGAGTCCAAACCGGAGC EM2 GACTGCGTACGAATTTGC ME3 TGAGTCCAAACCGGAAT EM3 GACTGCGTACGAATTGAC ME4 TGAGTCCAAACCGGACC EM4 GACTGCGTACGAATTTGA ME5 TGAGTCCAAACCGGAAG EM6 GACTGCGTACGAATTGCA ME6 TGAGTCCTTTCCGGTAA EM8 GACTGCGTACGAATTCTG ME7 TGAGTCCTTTCCGGTCC EM9 GACTGCGTACGAATTGAT ME8 TGAGTCCTTTCCGGTGC EM14 GACTGCGTACGAATTCAG ME9 TGAGTCCAAACCGGAGG EM18 GACTGCGTACGAATTCCT ME10 TGAGTCCAAACCGGAAA EM20 GACTGCGTACGAAATTCTT ME11 TGAGTCCAAACCGGAAC ME12 TGAGTCCAAACCGGTAG ME13 TGAGTCCAAACCGGCAT ME14 TGAGTCCAAACCGGTCT ME21 TGAGTCGTATCCGGTCT ME22 TGAGTCGTATCCGGAGT ME23 TGAGTCGTCTACGGTAG 1 ŞIĞVA et al. / Turk J Bot Supplementary Table 2. SSR primer sequences: linkage and position used for SSR screening of parental lines and F1, BR, and BS groups. SSR marker name Forward primers, sequence of primers Reverse primers, sequence of primers Linkage Position CSN084 TCCTTTGTCACTCACTGTGCTTCC TGTTGCAGAGGGAAGCATCTTTTT 6 72.2 CSN051 ATCAACGATTGATCCATCACCATC AAGACTTGACCACATGCATGGAAA 6 68.7 CMBR41 GTACCGCCTAGGGTTTCTCC CGAGGAAGAGAGAGAAGGGG 6 37.1 SSR3411 GTTGGAGTCGTGGAGAGAGC ATTTGAAGGGAGACGTGTGG 1 42.3 SSR4278 GAGGGAAGAAAATTGAAAGCAA CCGATAGTGTCAGCCCACTT 1 41.3 CU421 AAATCCACCTCTTCGTTGGA GGGTGATACAAGGAGCGAAG 1 0 CS27 GCTGAGTTATGGGGAAAGCA ATGTTGTTGGACCCCTTCAA 1 73.3 SSR1737 GATGATGATGGTCATCGTGG TCAAAGGATGGAAGAGGTGG 1 77.8 SSR1115 ATTCCCAATCCCAAAAAGGT CTCCTCCTCCAATGAGCAAG 1 19.8 SSR1091 CTCATCTCCGAACTCCCAAC TGGTAACAAGGTGGATCGAA 1 70.4 CMN21_55 TCATTGATCTTTTGCTTTTGC TGGTAGCAAACATCTGCCTG 1 38 SSR262 CCGTTGGTCTTGGACTCTCA TGTAAAAGTGATCAGGAGGGTCT 1 89.8 SSR190 TTCTGAAACGACACCTCCAG TCCCCTTCTAATTTACCTTCCA 1 4.8 CSJCT662 ACGTCGTAAAACCATCGGAGTC GCTTCCAAGCGTCAAAGGTATC 1 40.8 SSR231 GAGGTTGGGAAATTGGGAAT TATTCAAACACAAAGCCCGC 1 58.2 SSR10134 CCAAAACCAAAAGCAAAATCC AAATTTGCCAGGAACACCAG 1 29.2 CU84b GGATTCGACTGTCTCAACCG CATCATGCCATTTCATCGAC 1 3.4 SSR5793 CCCTCTGCTGCACATTATCC TGCACCAAGCAATAACTTGTC 1 5.3 SSR5723 TGGCTTTTCTGTCACGTCC TCCATGGTACAACAAGAATCACA 1 81.8 CU742 TGCTTTTCAGTACCTCCCTCA GGAAGAGCTGCCACTGCTAC 1 45.9 SSR5124 TCTTTACCAATTTTATGGTGATGTT AATCAAGGGTGCAAATGTCA 1 24.6 GCM206 TGGGCTACCTCTATCCTTTCTT AATCCCCAAAATCTCAACCA 1 96.6 SSR3222 TCCACAGTCTTGCATTTGCT ATCCCCTCGATTCACATCAA 1 96.6 SSR479 GGACGCCACGATTCTACAAG GGATGTTCGAGTTGCAGACC 1 97.5 SSR2733 TTGTTAGGTAAGCCATGCCC TTTGCCTGAGGAAGAATCTGA 1 72.8 CU1680 CCCACCGTTATCCTCATTTC AGAAGGCAAAGGCAAATTCA 1 17.4 SSR2734 TGTTGTTGGACCCCTTCAAT TGTCAAAGGAGGAGGTGGAG 1 72.8 SSR160 TGAATGAAAAACGTGATGTTGA TTGGAAAAGCCTCTCATTCG 1 12.6 CMN21_88 CAGTCCTCCCCTTCTTCTCC TCAGTCGCAACAGCAAGAAC 1 0 CSN135 ATTCGATCTCTATATTTTACTCC CACAATGTTTGACATATAGAC 2 70.6 CMBR103 TGGTTGAGGAAGACTACCATCC TCCACTAAAGTTTCCTTATGTTATGG 2 55.8 CMBR83 CGGACAAATCCCTCTCTGAA GAACAAGCAGCCAAAGACG 2 55.8 CMBR95 TTGACCTTTTACGGTGGTCC CGGACAAATCCCTCTCTGAA 2 55.8 CSWCT04 ACTATTGGGTCTCTCCTA GACCCGAGGTTATTATT 2 55.8 CMTC160A+b GTCTCTCTCCCTTATCTTCCA GATGGTGCCTTAGTTGTTCCG 2 46.4 CSN310 AAAATTGCCCAGTATGTGTTT TGCATCTATACTTTGTCAAGTC 2 42.1 CSN242 TCCTTTTATACCACTAGGTCAACCCAT ATAGCCTGACCATCTAATCGCCAA 2 32.9 GCM295 CCTATGTGCTTCCTTCAATCA CGCATAATTCAATGAAAATGAGT 2 22 CSWCTT02D CATCCTCATTCATGGCGGAGTGTG GAATTTGTTAAAAATGTACATTAA 2 5.2 CSN052 ATGGGTTTCCAAATGTTTGTCTCG CATCTCCATGCATTCCACTCTCAT 2 2.3 SSR30 TGAAATTGCTTACCCTTTGACC CCATGTTTTGTAGGGATCGAG 2 41.6 2 ŞIĞVA et al. / Turk J Bot SSR1286 CCGAAAACCATTGTTCAAGC TTTAGCTTAGTTTCCAAGCACTGA 2 57.7 SSR1253 CGCTGGATTTGTTTGTGAAAT AATGTCGGGGAGTGTCACAT 2 89.9 CU1594 CTACACCGGCGGACATTACT GAGCGAAGAATGAGAGGTGG 2 5.2 SSR1374 GGGAGATTCTCAAAATGGATGA TTGCGTGTAAGGAACGTCAC 2 37.3 CU1817 GAAACTCCAAGGAACCCCTC TGCATTGTCTGGTGATCCAT 2 94.6 SSR4035 TCCGCTTCGAGTACGCAT ACAAGAATGCTGGAGATGGC 2 55.8 SSR218 CGATCTTCGAGTTTCGCAAT ATCCAACGGCTCTCATTCAC 2 51.3 CU1458 GCTCTGTTCCTTAGGGAGGG GGGGTTTTGGTTTTTGGTTT 2 4.7 SSR3610 GGGGAAATACGTGAAAGAGG GGTCAAATGTCAAAGAGCGG 2 18.1 ECM92 SSR2634 TCAGACTCCATTTCAGAGCCTA CAAGGAGCTCTCCCCATTATT 2 40.2 GGGTTTGTGACACGTTTCCT GGCAAAGGCAACAAGTTTCT 2 65.3 SSR11596 TCACATAGGCTTGCTCCAAA TCAAACACCGCGAAAGAGAT 2 48.4 CU2297A TTCATATTCTAGTGTCAGCCAAACA TGAGTGGTGAGGGATTCACA 2 105.8 CU2239b TTTCTTCTTCGCAGTCACCA AGGTCAGCCCCAAATTCTCT 2 55.3 SSR5748 TGTGGCCTGTGCTAAAATGA TTTGGAAAAGCTAAAGCCCA 2 0 SSR204 AACCCTATTTGCACGCATTC GAGAAACAGCTGGAATTGGG 2 20.1 SSR3084 GACAAGGGATTCATCCGAGA CAGACCCTGAAGCGGATAAA 2 9.9 SSR289 AGGACGAGGCTAATGGGAGT TTACAAGTCCCCCTCAAACG 2 25.5 SSR10874 CTGGTTATAAATTCTGATGGTGATT ATGCTGCCATGTTACTCGTG 2 78.9 ECM115 TTCCACATGTCTCTGCCAAA TAGCCGGTGGAAATGGATTA 2 17.1 SSR6722 TCTCGTTTATGTGGATTAGTCGAG TATGTTCACCCAATGCTCCA 2 72.7 CMCTN2 CTGAAAGCAGTTTGTGTCGA AAAGAAGGAAGAGGCTGAGA 2 13.5 SSR10522 TTCCTTTTGTTTTTGGTATGGG ATGTCTGCTTTGCTGGCTTT 2 55.3 SSR11468 CCGTTTCACCGCTCATTTTA TCACAAGTGGCCAAAACAAA 2 63.4 CSN257 TGGAGAAAAAGAAGAAGTGGGTGA CAAGTGGGTCGTGAATTTTGTTTAG 2 0.9 CSN076 ATCTATAATACTACATGCACAC AATTGCACTTACAATGAGA 5 18.4 ECM80 CGTCCCCTTGTTACTACCTCA AAATCCTCCCTACATATATTATGCAAT 3 17.8 SSR2736 AATCCACTCCACAGGCTCAC CGTAGAGAAGCGCCTTGGTA 3 60.6 SSR3049 AGAGAAGAGTGCAACCAATGC TGTACGATCTTGTGGCTAGAGAA 3 0 SSR3056 TTGCCTGTCACATGATCAAAA TGCCTTCCATGTAAAAGCAC 3 84.5 ECM53 CTACCAGTTGTTGCGGCTCT TCCCAATTCCATAGCAGAGG 3 68.4 SSR2132 CAATTGGTATGAGTGAAAGATAAGC CTCTGGTCCACCCAATCCT 3 61.7 SSR33797 GACCCATGGGGTTATCAGAA TCTTGATGGCCGATCTATCC 3 68.9 SSR5012 GCCCTAGGCTTCGTCTTCTT TTCTACAACTGGCCAAACCC 3 107.1 CMN21_33 ATTCTTCAACAAGCCATCCG GGAAATTAGCACCAAGCGAA 3 96.7 SSR5572 GCAAACCATAAGTTTCCCCA GATCGATATTGCAACGAATTACA 3 85.5 CU832 CGTGTTTTCTCAGATTTCCCA CACTTCCCTTATCAACCCCA 3 85.5 SSR5891 GTTTGGGTATAGGGAGACCG TGAGATGTCGAGAACTCCATACA 3 22.9 SSR6210 TTGGAAAAGTCGCCAAACTT TCCATGTCTGCTTTTGATTCC 3 59 SSR10282 GGCACTCATTTCGGTTGACT CACGGACACAAATCACAATG 3 103 SSR1056 AAAGGGAAAGGTAAATTGCCA AGCAGTTCGGATGATATTGGA 3 77.2 CSN209 CCTGAACACAAATCTAAAAGAGCAGGA AGCATAAGCCTACGACCTACGGGT 3 62.2 SSR7505 GACAGGACCGTTAACCCAAA CTCCCTCTTTCCCTCACTCC 3 67 ECM134 TCTTTCCTCTGCAAATCCTTCT TGCTAAAGCTACATGCTGTCCT 3 81.3 3 ŞIĞVA et al. / Turk J Bot 4 TJ10 ACGAGGAAAACGCAAAATCA TGAACGTGGACGACATTTTT 3 23.4 SSR2008 TTGTCCTGGAAATTGGTGAA GGTGGGAAGTTTGTAAATGAGAA 3 69.8 CMBR153 TCAAAGACAAGAAGACCAACCA TGTGCTAAGAGAGAGAGAGAAGATTG 3 72.2 CMBR43 AGAGATGCTCCCTACACTGC TCAAGCAAACCCTAATCGGT 3 87 CMBR57 GCTCTGAAGAGTGGAATGAGAGA CCATTTGGGAAGTAGGCATC 3 98.2 CMN61_14 TGCAGGATCAAGAATCAAGTTC ACGAACTCCGGCATAATCAC 3 2.9 CSN002 AAAATGGGAAAAGTGGA GCCTTAACTAAATGACAAA 3 5.4 CSN018 TGTCTTTCCCTCAAACTACACCCC CCAAATGGGGTTCAACAAAGAAAC 3 94.7 CSN069 GATGTATGCTTATTTATACCCAA AGAAAATTAATCAAGACCTCTC 3 86 CSN147 CCACCCAACCAAAAAGCAGTAAAC GATGGGAGCAAATGTTGGTTTTGT 3 77.7 CSN153 TGGGTTTGCACACTCAAGAGAAAG AACATGAGAGTTCTCTTGCCCACC 3 49.4 CSN160 GTAGCAGAAGCCTCACCGGAGTAA CTTGTAGCAGAAGGCTTCCACGTT 3 2.3 CSN161 GTCCTTTCTGCCATTTTCTTGGGT CCCAAATTTAGTGGCTTCAACATCA 3 36.4 CSN166 CGTTCCTTCCCACTCTTCACATTT TTTGATGATGATGATGATGAGCCG 3 27.4 CSN171 TGCACAACAGTGTTTAGCTTGATGA TGAAGCCGAAGTAGATGAGACCTTC 3 55.6 CSN191 TAGATTTTTCATGAAGGGCGTTGG CGTCATTGTGACTGGAGGTAGCAT 3 22.9 CSN201 TCAACTTACACACACCCACACAAAA GTGGTTCGTCATTCCAGTTTATTTG 3 109.1 CSN251 ACCGACAAGCAGAGAGAAGAAAGC ATTTGGACTCATTTTGAGCACCGT 3 17.8 CSN284 AGCACCCCGGTATTTCTCTTTGAT TAAAGAGGCGAAAAGTTCGGAAGC 3 31.9 CSN306 TTTCCTCCCCTTTCCTTCATTCTC CAACCCAAATGCTTAGAGAACCCA 3 90.3 GCM246 AAAACGGAGATGTGGAGGAC TTAAGCAAGCAGCCAAAATG 3 65.1 CSN025 AAATAGACTTTGACCCTTTT GTCTGTATTTCAAATCTAACTC 4 2.8 SSR10368 TGTTCCGGCTCTTCAGAGAT GCCCGTATTTTATAAATAGTTTCATTT 4 70 CSJCT323 TCGATCTTGTAGAAAGCAAGGA CAAGCAAATTCCCATTCACC 4 0 CSN066 GGATCCGAAATAGAGAAAGGAAA GTTGTTTGGGTGTTAATGTGAAA 4 1.4 SSR2697 TGCTAACCCAACCAAACAAA CTGCCATTTCAAGCTATGGG 4 64.4 CU1791 AATGATGCACGAACAAACCA ATTGGCCCGAAGTAGGTCTT 4 98.8 SSR5899 TAAGAGCAAAAATCCCACGC AGCTCAATCAACGTCAAGAGAA 4 25.2 SSR1949 AGGAAAACCGGAAGCAGAAT TCCACAGAACAACCGTGAAA 4 2.3 SSR3598 TCAACAACAAGACAACCCCA TGGTCCCTTTTGATTTCTGG 4 5.2 SSR7130 CCACACACACACACAGTCACA TCCCATTGTCCCTCACTCTC 4 56.4 CSJCT42 GAGAGCCCCACCACCAGTCT GGATCCATGGCGCCTATAAATACC 4 52.2 SSR12 TCTCACCATGGTCACCTAATG GGTCATTGAAGAGTCAAGTTGG 4 22.8 SSR7209 CTGTCTGCAGAGCCATCTGA CCATCAAGTTGAGGAGCAAA 4 1.4 SSR2803 ATTGCTCCCAAGCAACTTGA ATTTCAAACCTCCAAGGCTG 4 28.6 CU1830 TCCTTTCCCCCATAATGACA GGTGGTTATGGTGGTGGTTC 4 46.2 SSR4482 GGAATGAATAAGTTCTGGAAGAAG CTTCCCATCAAAAAGCCTCA 4 55.5 SSR6225 TGTATCATTCCAATCCCTCCA CGAAGTCCAAATTGATAAAGGC 4 41.2 SSR203 AATAGCTCGAAAATGATGGCA CCTCAAAGAGGATCAAGCGA 4 71.4 SSR2895 GAGTTGGCAAGTCACGTTGT TTTCCCTCATTATGCCATCC 5 93.1 CSJCT435 TCAACTGGTAGTTGGGAAACCT CTGTCAATCAATGCTTCAGCTC 5 0 CSWTA13 AGATGGGCAGTTAGAGTTGATGCT CATTTAAAGCCTCATCAACACCTC 5 47.2 CSWTA04 TAAACATATGTGATTATACAGCAA GTGTTTTGGTGTTATGTGAATATC 5 0.5 GCM344 TCATCAGTCAGTAAGAGAGAGAGAG ATGTGACCTGATCCCATTGA 5 34.6 ŞIĞVA et al. / Turk J Bot SSR6447 AAGTATGACGACACCCTTCG CGCAAAACCGAAAGGTACATA 5 22.1 CSJCT315 CCACGAAATACAGATCAGCAAC CACGTTACATTGGACGAGAGAT 5 17.9 CSWCT32 GCATTAAATTGGAAAGGGGAATCA TGTCCTTTAATTTGGAAATTGAAT 5 26.6 CSJCT14 TTCCACGTTACATTGGACGA AGAATTCATGGCCTGCAGAT 5 17.4 CSN140 TGTTTGCTGCCCTAGGGTTTCTTA TTAGAAGTGCATGATGCTCACAGC 5 28.4 CU174 ATTGTTGTAATGGGTTGGGG TTCCAAGCAAACTGAAACCC 5 18.4 CSN259 TTGTTTGTGACATCGTGGTGGTTA CCAAATCTTTCCCAATCCATCTTG 5 34.6 CSJCT661 GGGTCATACCCAAAAGGGAGA TCTTGCTTTAGCCGACAACTCA 5 11.8 SSR772 AGAAGCGTTGGGGGAAAATA TGCTACCTCACATGGTTTTG 5 79.9 SSR11439 CGTAATTCCGCATCGTTTTT CGAGAACATGATCGTCTCCA 5 72.3 SSR2166 TCGATTTCAAACACTCCACTTG TCAAACAAACTACATGCCACAA 5 90.5 SSR2693 TTTCAGCCATTGGTTTCCAT CCAAAGCCAGTACAGCGTTA 5 63.6 CSWCT13B TGTGATCAACCAACTTCA GAATTATGGGTTCATTTT 5 83 CSN061 ACTTCAATCTCATATACTGTG TACCACTGGGATCCTAA 5 83 SSR2459 TCGGAAGATGGGTTATTTGG TGACCCCTCACATTCTCTCC 5 96.3 SSR7081 GGCGACTTTGGAGTGTAACAA GGAAAGATATTCTCAGGGAATCTAA 5 20 CMAGN32 CAGATTAGAAGAAAAAGAGG AGCAGACAGCATATAAAGCT 1 9.2 CSN114 CTTTCAAAATTCGAGGCAAAACCC TGATCCAATGATGTAAGAGGGTGTG 1 14.5 CSN197 ACAAGAAAACCCCACAAATGCAAG CGAAAGCCTGAAAAGGGCAAAATA 1 39.9 CSN220 TCATCGATCCAACTAAAACACCCC ATCGAACCACAAAGGGGTAAGTGA 1 54.3 CSWTA05 GCATGAGCTCGAGCTGGTGTAGTG CGCCTGTTTTCATTTTGATTGGTT 1 22.7 TJ24 AAACACGGGCTTGAAGAAAA CCCAGAAGGTGAGAGAGACCT 1 40.8 GCM106 CAATTCAGTGAGAGAGAGAG ACCGAATACACATGATTACA 6 10.6 SSR1191 TTCTTTCAAATGCCCATCAA AAAGATATGGGTGGGAGCAA 6 8.2 CU1792a ATGAGCATTGAGCAGTCACG GGTGTATTTGTGAGGGGTGG 6 42.9 CSN282 GGAAAATGAAATCATGTGCTCCTTC TCGTCATTCTAAGTTACCTGGTTTGC 6 82 CSWATT02 CCAGTACAAATAACATCCCGAAGC CAAACCTCTTTCAGTACCGGAATA 6 79 SSR2123 TGGAAAATGACAGCAACCAA CCATTCTTCCTTTCCACGAA 6 59.8 CSWCT25 AAAGAAATTAAGTCAATCAAACCG CCCACCAATAGTAAAATTATACAT 6 79.7 SSR4910 CAACACCCATTCATTGACAAA TCTGCAAAGCTCAGAAGCAA 6 48.1 CMN01_74 GCTTTCCCTTCCCTCGTATC AATTGCACGCACAAAGTACA 6 35.2 SSR2460 CTCAGAAACCCTTCCACCAA CTGTACCGCGAGGACAGTTT 6 82 CS52 GCCTCAACCAAACATCCAAT ACAACCTTGCCATCTGGTTC 6 17.2 SSR5267 TGCAGCCTAATTTAAACCCC TGTGAAGAAGTCAGACGCAAA 6 16.7 CSN095 CAGAAGCCTTGCAACTCTTAGGAA TGTTTCAGTGTCTCAGGTCCATCC 6 1.9 CSWCT29 TGGACGAGTTGCTCTTGTAAGCCT ATCAAACTTGGCATGTGGCATGAC 6 6.3 CSWCT03 TTCTCAGAACTGCCACTG CACTCTTGAGGGGAAAAA 6 79 CSJCT77 TCAGAGTGAATGAGCTCATGGAAG TGACGTCCGCAAGGACACAG 6 44.3 CSJCT720 CCAACGGAGGTCTGAACG CAGCGGAGAAAGGCTCAG 6 80.1 SSR842 CGCCCAAATTGAACGAATAA CCTCCGCCTTTCTTTCTTTT 6 43.4 CSJCT674 TAGAAAGGAAGGGATGTGATTAGG ACAGGTGGTTAGAGGTTAGAGCTG 6 45.2 CSWCT05B ATACGAACTCTTTTATTTTATAGG ATTAAGGAGATAAGAATTGTGTTG 6 82.5 CSN116 GTGCGTTGGAAGAAAGAAAGGAAA ATGTGGAGCAAGTGTTGTCTCGTC 6 25.6 SSR5946 CCTGAGAATCGAAGGTCACA GCCATCACTAACTGACGCCT 6 88.3 5 ŞIĞVA et al. / Turk J Bot 6 CU2063 GAGAAACCAAAAACAGACCCC AGACCGGGAGACAGAGGAAT 6 82 CU886 CAACTCTGTTCCCTAAACTTCTTCTC CCACTGTTTCTTCTATTCATCTTCTG 6 64.7 CSJCT266N CTGTGGTTGGGTTGGAAATCTC GGGAGGCAGTAGACACATCC 6 91.1 SSR2086 CCAGAAGGCTAAAGGTGGAG GTAATGTTCTGGCCAAGCG 6 37.1 CU934 CTCCACGAACCTTCCTTCAC ATTGTTCGGCTTGGTTCAAT 6 63.8 SSR973 TTGGGGCTGTTCTAATTTCG TCGTTGTTGAAGCCAAAGAA 6 41 CSN263 ATTACAACCACAAGTGGCGAGACA AGCTGATTTCACCACAGCTTCAAA 6 84.4 SSR6240 TTGAACATGAAAAGTATTGGCG TTGCAACTAAGGTGTGCTATTCTC 6 80.1 SSR158 GTGATCAGGAATGGTTTGGG ATCTTCTTCTCCACCACCGC 6 0.5 SSR300 TGCCGACAAAGAGTTTTTCA TGCTAATTCATTCATACTTTGTCACTT 6 50 SSR19 ATTCTCGTGAACCATCACCC ACTTTTGCCACTTGGCACTT 6 22.7 SSR1643 TGCAGGTCGACAATTCAATAA TCAAAAGGCACATGTGATGTC 6 89.7 CSN227 GCTAAACTCCCACGCATCAAACTT CCAGAGAGTGGAGAGCAAATGGAT 6 40.5 CSWGCA01 AGTGATGGTGCAGGGCTATCTTAT TTGTCTTCCCTCCTCTTCTCGTCT 6 0 SSR233 AACCATAAAGTCGGGAGGGT GGGAAAGGCAGGAGAAAAAC 6 79.5 SSR1582 AATGCGAATTATGCGATATGA AATGCCGGTCTCTACAATGC 6 60.3 CSN126 GCAGAAGCCTTATTCTCCCAGAG AATTGGTGTATTTGTGAGGGGTGG 6 42.9 CSN208 TGCATCTGGTCTCCTTCTTCTTGT AATGAGGCTTTTTGGAAGAGGAGG 6 84.9 SSR7198 AACAACAGTTGCATTTTTAGATTTT GGTGAGAATTTGTTGGTCTATCG 6 16.7 CSWCT16B CTTATGGTCGGAGAAG CTCAGATAACCCAAAATA 6 57.9 CU2345 TCATTTGGGTGAGCATTTGA GCCAAAGTCGACATGCTTCT 6 35.7 CMBR145 TGTGACAATGTGCAACCAG AAAAATGGTGTTAAACGACATGG 6 72.2 SSR259 TCCACGTAGACATTGTGAGGTC CGAGTGTAGCTCAATTAATATGGTG 6 35.7 SSR2385 CGCTCTCTCTCCACTTTTGG AAAAGTGACCGTTGGAGTGC 6 29 CSN293 TCATGTTCAAATCTCATTCCCCCT ATAAAGAACACACATGGTGGTGGC 6 60.3 SSR3940 GATTCTCCGGAAACGGATTT GTCGTTTTCCGCGATTCTAC 6 29 SSR3962 CTTTTTGGGGACCCTTCATT CACGAATGCTGCTCTAACCA 6 60.3 CSN287 AGGGAGATAGTATGACAAGATTTCCTC AGTGGGGTTGAGCAAGTTGAAGAC 6 82 SSR1148 CGGAGAAAGGCTCAGAAACA TGCACGCACATAAACTAGGG 6 80.1 SSR4252 AAAGAACACACATGGTGGTGG AAGGAGTGTTTGAATAGGCCG 6 60.3 SSR3357 AAAAGGGCAAGTCAAAACCC GGGGAGGAAGAGAGACCCTT 6 91.1 SSR4637 ATCTGGTACCGCTGTTTTGC GTGTTTGATGTACGCGGTTG 6 31.4 CMCTN86 GTGACAGTTATCAAGGATGC AAGGGAATGCATGTGGAC 7 5.5 SSR215 GGAGCCCTAGTAGGAAACCG GGACCACGTGAAAGATTCAGA 7 36.1 CMN05_87 GTCCCTCACATTCTCCTCCA TTCGGAGGATTGGTATTTGC 7 14 SSR3076 GGGATGTAGGAGGGGATTGT TCGTTTATGACAGCATTTCCA 7 55.8 CSN183 TGGACCACGTGAAAGATTCAGAAA GCCTACAACTATCCCAAATGGAGC 7 36.1 CSWTA11B GGTAGGCAATCAAAGAGTGGATGG AACATATAGGAATCTAACAAAGTG 7 9.7 CSN244 CACAACGTGTGTGCAACTAAACGA TGTTTCCCTTCTCCATGCTCCTTA 7 7.6 SSR6585 GCAGGTCATACTCTTTAATTATTCCA TGTTATCATCGCCATACCCA 7 12.6 CU1094 TGCTAAAACAATGCAGCACA TAACAACCCCATCAAAAGGC 7 50.7 SSR4847 TCGTGCCTCATTTGGTAGTG GCCAAGGTAACGAATTGCAT 7 25.3 SSR477 TATTGCGATGGTTTGACGTG GCAAATTCCGGAGTTCGTTA 7 67.2 CSN266 TTTTAGGTGCCATCCTTGACTTGG TCCTAAGGTATTGATTCCACGATTC 7 0 ŞIĞVA et al. / Turk J Bot CSN159 TGGTTCAGAAAGGGGAAAATCAGA TTTCACACCATTTACGGTTATGGG 5 79.4 CSN172 TCTCAACCCAGATTTGACCTACCA CCCCTGGAAGTAAAGGTGACACTG 5 84 CSN184 CTTTATCTTCGGCTTTGATGTCCG TCCATAGCAGTTCCCAATGTCCTT 5 91 CSWCT13BALT ATAGGGCAATTTGTCTCT CACTGGGATCCTAACAAC na na CSWCT17 TTGAATTATGGGTTCATTTTT GACAATGATAAACTTCCCTGA 5 85.6 CSWCT24B ATCGCTTTATCTTCGGCTTTGAGT AATCCATAGCAGTTCCCAATGTCC 5 91 CMTCN56 CTTTTCTCTTCTTCTATTCTC ATCCAAAAGGAATCGGAAAG 4 54.6 CSN121 GCATGCGACATTTTGGATTCTTC CCCATGACCGAAAGAGGAATATGA 4 53.7 CSN145 AGTTCCAGGTCAGATCTCTT TCGATCCAATAATATTGGGATGG 4 41.2 CSN157 GAAGCTCCTCAAACCATT ACTATGTTGAAAGATTGATCCT 4 38.3 CSN181 ATCTTGTCCGTTTGCTTGATCCAT GTGATTTTGGCTACTCCAAGGTCG 4 70 CSN295 GCAACTAACCCATAAATGAAGAGATGC TCAAAAGGCAATGGACCTTACACA 4 28.1 CSWCT06B TTTAAATTCTTCCTAACC TTTGCTTTGCATTTGGAT 4 31 CU2994_1 CATGATCCAACCATGATCCA GGCTAAATCCATGGGCACTA na na CU2994_2 TGATCCAACCATGATCCAGA GGCTAAATCCATGGGCACTA na na CU2994_3 CCATGATCCAGAAGACGACA GGCTAAATCCATGGGCACTA na na CU2998_1 AAAGGGGTTTCCATTCTTCTG CTCTGTCCTTTGCAGCATCA na na CU2998_2 GGGGTTTCCATTCTTCTGTCT CTCTGTCCTTTGCAGCATCA na na CU2998_3 AGGGGTTTCCATTCTTCTGTC CTCTGTCCTTTGCAGCATCA na na CU3009_1 ACGGTGAGTTCCTCGTCATC CTCTATTTTCCATTCCGCCA na na CU3009_2 TCCTCAACGGTGAGTTCCTC CTCTATTTTCCATTCCGCCA na na CU3009_3 CGGTGAGTTCCTCGTCATCT CTCTATTTTCCATTCCGCCA na na CU3015_1 GGACATGGAGATCGAGGAAA GAATTCGTGGATGAAAGGGA na na CU3015_2 GGACATGGAGATCGAGGAAA CGTGGATGAAAGGGAAGAGA na na CU3015_3 GGACATGGAGATCGAGGAAA TCGTGGATGAAAGGGAAGAG na na CU3031_1 AATGAAGGAAAAGATCCGGC GTGTTGTCGGCACAATTGAC na na CU3031_2 AATGAAGGAAAAGATCCGGC TACAAGTTCTTGGCTCCCGT na na CU3031_3 AATGAAGGAAAAGATCCGGC GTGTTGTCGGCACAATTGAC na na CU3035_1 TCCCAAACTCATCTCATCACC GGCTCTGCCATTGTGTTTTT na na CU3035_2 AAATGGGGTCTCCCATAATTG TTTTTCCATCTGAGGGGATG na na CU3035_3 AATGGGGTCTCCCATAATTG TTTTTCCATCTGAGGGGATG na na CU3056_1 CTGAGAAAATTGGCCTTTCG TCCTGTACCTTCGTCTTGGG na na CU3056_2 CTGAGAAAATTGGCCTTTCG CCTGTACCTTCGTCTTGGGA na na CU3056_3 TGAGAAAATTGGCCTTTCGT TCCTGTACCTTCGTCTTGGG na na CU3073_1 GAGCAACCTCAGCATCACAA TTTGGGTAGCCAAGAAATCG na na CU3073_2 CCTCAGCATCACAAAGGACA TTTGGGTAGCCAAGAAATCG na na CU3073_3 AGAGCAACCTCAGCATCACA TTTGGGTAGCCAAGAAATCG na na CSJCT10N TGTAAAACGACGGCCAGTAACTCTCATGGGAAACAGAG ATTCTTCTCAACCTCTTCCT na na CSJCT 22 TGTAAAACGACGGCCAGTCCGTTCTGGCGCGCGATAGA CGTGGATAACGCGCAACTAACC na na CSJCT 77 TGTAAAACGACGGCCAGTTCAGAGTGAATGAGCTCATGGAAG TGACGTCCGCAAGGACACAG na na CSJCT 108 TGTAAAACGACGGCCAGTGCCCGTTCTGGCGCGCGATAGA GTGGATAACGCGCTCAACTAACCT na na 7 ŞIĞVA et al. / Turk J Bot 8 CSJCT 134N TGTAAAACGACGGCCAGTCTGCTTGAAAGAGCCGAGAATGAG TCAAAAGGCTTTGGAGGGAG na na CSJCT 156 TGTAAAACGACGGCCAGTTCGTGGATAACGCGCTCAAC GCGATAGAAAAAGAGAGCG na na CSJCT 254 TGTAAAACGACGGCCAGTGCCAACTATAGCCATTGATTTG TCAACACCTCCTCAACACT na na CSJCT 290N TGTAAAACGACGGCCAGTAACACCTCGAGCAAGAGCAG GGGTTTGAATCTCCCAGTCC na na CSJCT 358 TGTAAAACGACGGCCAGTGGGTGAACAACCAAGAGAGAA TGAGGGAGCGGTTGATTAGAG na na CSJCT 390 TGTAAAACGACGGCCAGTGAATTTAGGCATAGAGAGAAAGTGG CCCTAAACAGAAGACTTTGCTAC na na CSJCT 565 TGTAAAACGACGGCCAGTGAAAGAGCGGGAGAAATGGAAACTC AAGCGGTGGGAATTGAATTGGTTC na na CSJCT 598 TGTAAAACGACGGCCAGTTCCCAAACATAGAATGCGATAATA CTGTCTGTTTTTCGATCTTGTAGA na na CSJCT 619 TGTAAAACGACGGCCAGTAACAAAGAACTAAGCAATTCCAGG CTTAGGAGAAGCCAAGACACTAGG na na CSJCT 651 TGTAAAACGACGGCCAGTAGAGCGGGAGAAATGGAAAC CGGTGGGAATTGAATTGGTT na na CSJCT 656 TGTAAAACGACGGCCAGTTCCTACAACTCAAAGGGCCAAC GAAGTGGAGTGGAGTGGAGTGA na na CSJCT 661 TGTAAAACGACGGCCAGTGGGTCATACCCAAAAGGGAGA TCTTGCTTTAGCCGACAACTCA na na CSJCT 664 TGTAAAACGACGGCCAGTAAGTGGGCTCGATTGGAAGA CCGTCGCCTTTCTCAAGTTC na na CSJCT 726 TGTAAAACGACGGCCAGTGAAGAGACGGCTCCTTTCAG CCCGATTTGTCGTCTCTCTC na na CSJCT 933 TGTAAAACGACGGCCAGTGATGACATGGACATGTCTGCTTTGC AAGATCTCTCCCATCTACCAACTTACC na na CSJCT 944 TGTAAAACGACGGCCAGTGGCCTAGAATTTAGGCATAGAGA GCTGTCTTTATGTTTCTGCAAC na na YCZ-SCAR-1 GGGGAATGAGTGGATGCAAGATG GGGTAGTTGGCGATTGACATTG na na YCZ-SCAR-2 GGCTATTGTACCCTATGAACAAC GTAGCACAAATAGGATTTAAGGTC na na YCZ-CAP-1 GACCTTAAATCCTATTTGTGCTAC GCGGCTTGGACTTGGCTCAAC na na YCZ-CAP-2 CATTCGTTGATGTGGAAGACCTGTC CAGAAGCAGAGCCGTCACTCTCC na na M1 GCTTTGGAAAGAATTGTAAACG CAGTTGTAAAAGTGAGAGCTTGG na na M2 ATTACAAGTTAGGGGACAATGAAAG CGACCTTGGTGAATTAGAGATTAG na na M3 CACTCTAATCTCTAATTCACCAAGG TGGGGGTTTTCTTGAGAGTT na na M4 TGTTCTTCAAATCACGTATCCT TGGGCAGAATTTGAACTTGT na na 8164 ATGTGTGATTTGCAGATTTTCATAG ACCTTCCCTGATCGACTCCT na na SCBC469 TTGAGCGAAAAATACATACC TGACAAACTTTAGGCTGACAT na na SCL19 TCGAGGAACATCTTTACTT TTATTCTTATGTTGATCGCTTGTC na na SCK7 CTCACGCAAAGCCCTCAGA TAGAAACTTCGAATAATCAGACAG na na SCAA9 CGACCCGCCTCACTTAGC GTCTTCACCGGCATTTTG na na SCAO7 TGCGAGCCAAATCCCATCT AGTGGAGTGGAGACGCAGAGA na na SCAI4 GAAGTCCGTGTCTATTATTGAT ATTACATTGTGGCAGTCTTTC na na SCBC403 CGGATTTGACGGTAACT AAGGTCGAGGGATGTGC na na SCL18 ATTTGGTTATTATTTTTATTC AACTCACCTCAAGATTTAGA na na SCU15 ATCCAGCGCATTCTTTAG TTCGGCGGACTTGCTTTGGTGT na na ŞIĞVA et al. / Turk J Bot SCAN5 GGTATTGGTATGTTTTTCTATTTC GGTTTTACATCAGCCATCCT na na SCBC519 AGATATAAGCGTTGTGAGGAT ATTATGATAGATTCGTTTTTACC na na SCAK5 GGTATTGGTATGTTTTTCTATTTC GGTTTTACATCAGCCATCCT na na SCK15 TCCTGCCAAATAAGAGA TGCCAATCGATCCTAAAAC na na SCAO12 CCTGTCATCTTTGCTCCTAACTAA CTACGGATAAATCACCTGGACCTT na na CMGA15 CGGCAAGACGATTGGCAGC ATCACCGTAGCGAAGCACC na na CMCT44 TCAACTGTCCATTTCTCGCTG CCGTAAAGACGAAAACCCTTC na na CMACC146 CAACCACCGACTACTAAGTC CGACCAAACCCATCCGATAA na na CMCTT144 CAAAAGGTTTCGATTGGTGGG AAATGGTGGGGGTTGAATAGG na na CMTC47 GCATAAAAGAATTTGCAGAC AGAATTGAGAAGAGATAGAG na na CMCCA145 GAGGGAAGGCAGAAACCAAAG GCTACTTTTGTGGTGGTGG na na CMGA172 CAATCGCAGATACTTCCACG TGCTTGTCCCAACGGTGTCAT na na CMTC123 CGGATTGTACTTATTGCCAAG CATGTGCATGTGTGCATGTAC na na CMGT108 CTCCTTCAAACATTGTGTGTG GAGATAGGTATAGTATAGGGG na na CMTAA166 GGAACAGACACCTCTTCTGAG TCCGTCTACAAGCGTGACTGT na na CMGA165 CTTGTTTCGAGACTATGGTG TTCAACTACAGCAAGGTCAGC na na CMCT160A GTCTCTCTCCCTTATCTTCCA ACGGTGTTTGGTGTGAGAAG na na CMTC160A+b GTCTCTCTCCCTTATCTTCCA GATGGTGCCTTAGTTGTTCCG na na CMCT505 GACAGTAATCACCTCATCAAC GGGAATGTAAATTGGATATG na na CSCTTT15A GTTTGATAATGGCGGATTGT GTAGAAATGAAGGTATGGTGG na na CSGTT15b ACCTTGTTGATTCGGTTCTCC AGTTCGGTTTAACTACCCACG na na CSTCC813 GTTGTGCTGCCCAATAGTTG CACCACTTCTTCCACCGAA na na CSCT335 CCTTCACTTCCATCTTCATC CGGTCCTTCATTTCATAGAC na na CMTC51 ATTGGGGTTTCTTTGAGGTGA CCATGTCTAAAAACTCATGTGG na na CSAT214 TTGAGTACCATTGTCATAGAT TTAGTTTAATTTCATCTCTGT na na CSAT425 TAGGGCAGGTATTATTTCAG ACGGACTGATTTAGTATAGGC na na CSCCT571 CCTTTCTGCTGTTTCTTCTTC GAAGGAAGGAGTGAGGGGAAG na na CSTA050 GAATTATGCAGATGGGTCTT CAAGAAGATCAAATGATAGC na na UW044613 GGCATTCGCATCTTTTATCC CCAGAATCATTCACATGGCA na na UW044536 GGTATGTGTCAATGCTCCACA CAAATCTCAAACCCCTTAGTCG na na SSR11654 AGACCCTTTCCAGGAACCAT CAGAGGTGTCTAAGCTCCCG na na SSR20705 CCTTTCCTTACCCATCCCAT ACCCATTTGAATCAGCTTCG na na UW045196 CGGCTGGGTCATAAAAAGAA CATGTGCTCGCTTTTCCATA na na SSR14697 GGGTCAACCTACCAACCGT CCTTACAGGGAAAACGGTGA na na SSR10018 CTTTTGTTCTTGTGGAATGTGA ATTTGGGGATGGAGAGGTTC na na SSR16881 CCCTCTCAACATTTTCCACAA CGAGGAGACTTGATGGGATG na na SSR10839 TTGAATTCCTCTGCCCAATC TGGAATTTTGTTAGGGGGAA na na UW084469 AAAAATAACCAAGAAAATAGACATTGA ATGGGATTTTTAAATCACCTTATATC na na UW073856 TGCAAACTCCTTACTTTTTCGG TCCAAATGGTTAGAAAATGGAGA na na SSR01816 GCCATTATGTAGGGGTATGAAAA TCGAACTGATTAAGATTGCAAAA na na UW005572 CAAATTGCAACATTTATGTCTGTG CCATCATTTTCCACGTTAGGA na na SSR16055 CATCCTTTCGACTTTGATGC CTGCAAACGTGAAGAGAGCC na na UW073923 CCTCCAGCAACATACAATGG TTGGATCATGCTTGTTTTGA na na UW073982 CATGCCGTCTTTTGTTTCCT CCAACCTCACAACCCTCCTA na na 9 ŞIĞVA et al. / Turk J Bot UW085111 GCGTATTTCAATGGCACAAC CAAATCCAATCAAATGCCTG na na UW049617 TGGTTTTGGCCTTTGATTTC GCCTTGAACCCACATGCTAT na na SSR00420 TAACAACCACCGATCTTCGC TTTGTATAAAGCTACCAAGGTTTCC na na SSR17196 GGGTCGAGATAAAGCCGTAA TCGAGCTCGTTGTCGAATAA na na SSR03962 ATGGAGCCCTAATCACGTTG CCGGCCAAACCCTATAAGAG na na UW084481 TTTTCATTTGATTTTATAACAGTGGA TGATCTGCATCGCTTCTTCA na na SSR19914 ATGGTCCACCAAACAAATGG GCTGTACTTGGAATCACTTCCC na na SSR05079 GAGGAAAATTCCAAAAATTGC TGCGAATTGGTCTCCTCTTT na na SSR03680 AAATGAGTGCCAAAAGCCAT CCACCGAAAGAGATCAAACAA na na SSR21747 CAGCTGTTCGAGATTCCGAG GAACAAATGGGGAGAGCAAA na na SSR10963 AGCATGCAATTAATAGGCCA CAAACAAAAGTAAGAACAAAAATGGA na na SSR11820 ACGACGCCGTATTTGCTTAG AAGCTCGTTCATTATTACCCAA na na UW084642 GGAATAATGGGACCCCTACAA TGAACCAAGTCCACAATTGCTA na na UW084812 AAACAAATTTCTTCAAATTGTGATATG GCATTATTGACAAGATGGTAATGG na na SSR00204 AACCCTATTTGCACGCATTC GAGAAACAGCTGGAATTGGG na na UW084796 CAAAAGGTCAAAAAGGTGGTG TGCATTAAATTAGATTAGAAAAATGGA na na UW084786 GCTCCCTATTTCAATTTGTGG TGAAATTCAACCCAATATAAAGAAC na na UW084848 TTTAAGCGCAACTCAACTCG GAAGGCTACTACCGTCTTTGTATAG na na UW084632 TTGTACGGATGTTCGGCTCT TCCTCCAACTGATCATCACC na na UW084849 AAGGAGGGGACAAACAACATT TTCAAAAGCAAATTCATTACCC na na UW041214 GGGAAGATCAATCGTCCAGA TCAAAGCATGATGATGAACGA na na UW085088 CTGCGACATGCGATTTTCTA TTTAATTGGAATATTTCACAATACGTT na na SSR00378 TCCCTAAAATTTCGACAACCC TTAGTATGGCTTGAACACCCA na na SSR22203 GGTGAGCAAGGGTTTTCTTG AAGGCGTTCCGATGATTTTT na na SSR10518 TCTAATTCGCTCCGGATGAT TTGCAGCGAACAATCCTGTA na na UW082429 AGTTGTAGCCATGTGGAGGC AAATTTGCGTTAGTCTGATGGA na na UW082557 CCACACTTCCTTCCTCATGC CAAAATAGTGGTTGCCCAAAA na na UW084618 AATCCTCCATGGTTAGGGTAGA TGAAAATAAATGTGTTCCTGCAA na na UW083140 CCACTTCCACTTTCACCACC TGAAACCAAAGTCCCACTCC na na UW083192 CCCATCACTTACCCTTTCCA TCATGTCCGAAACCCCTTAC na na SSR11909 AATAATACCAGTGGCCCCATC AAAGCTCCCTCCTCCCCTAC na na SSR16916 AGCATGATGAGGATCCCTTG CCGAACTGCACAAAGTATGG na na SSR12383 AACCATGGCTTAACGAGCAT TGCGAACTTTTTCCGTTTTC na na UW084457 TCATAACTCCTTGGGGGTTG GTAAAGTTTGGATTCTATATGGTCAA na na SSR15029 CCTGCTTCCCGTTCAAATTA TTGTTTCTCAGTCAAATAGCTTCG na na SSR18640 GGCGTTGGGTTAAGCATTTA CGTGGGTTTTTACCGTCATT na na SSR17769 CAATCAACTTCAAGTGTTGGGA AAAAGCTTCATTAGTCGCATGTT na na SSR01573 CGTTAGGCCAAACAAAATTGA TGCAAACGTTTCTCTAGGCA na na SSR02771 AAGTACACCAGCACTTGGGC CACACTCTTATGGCTTTCGTCA na na SSR22545 TGATGAGCGATGCAGAGAAT TGCTTTGGTTTGGTGATTTG na na SSR02051 CAGGTCATCTTCTCTTTGACTATACTT TGCTTTTATCCCCACTTTTCTT na na UW084286 GATGAGATGGAGAGGGTTGG CACACGAAATAATGTCACTAAAAGTT na na SSR03552 CCAACTTGGAAAATTGCTACA TTCAGTTCGCTCGTGAAAGA na na UW079378 TGTTCTTCACATGCAATCCAA TTGAGCCAACACAAGAGAGC na na 10 ŞIĞVA et al. / Turk J Bot SSR02132 CAATTGGTATGAGTGAAAGATAAGC CTCTGGTCCACCCAATCCT na na SSR18428 CCATTCACTTCCTTTCCAGC TGGTTTCAAGACCACCCTCT na na SSR20270 TTGGGATGTAGATGTCCGGT TCCCCAATCCAACTCCCTAT na na SSR01056 AAAGGGAAAGGTAAATTGCCA AGCAGTTCGGATGATATTGGA na na SSR07120 GATCAAAAGATCCAACTAATAACCA TCGTCCAAATAGTTGTTCTTACCA na na SSR18311 GCGGATCAGAGAGGAAACAG GAAACAAACGTCCTCCTCCA na na SSR05328 TGCAGACTGTAAAATAAATGGTGA CCGAGGCAGTAATCCAACAT na na UW084838 GCAGCCTTATGCATTGTCTTT GGTCCTCATCCCTTGTATTCTG na na SSR11397 GAGGATGAAATAGTTGTCACTGAA TGATGCCCAATAAAACCCTT na na UW084840 NNACACGTAGTCAGAAAAACATATAAA TTAAACAAACCCAAATCTTTTCTTC na na UW084841 GACAAACATGTTAATCAGACACAAA TTGGCGGAGGTTAATCACAT na na SSR06031 TGGGAAGAGAACCCTAGGAAA TTGCAATTACTCATCGCTGC na na SSR23177 TGGATGAATGATGCCACAGT CAAAAGCCTGTCTTGGTAAAAA na na SSR30236 TCAATTAAACGAGTGGCAAAGA GCCACGGGTTGACTACAAAT na na SSR03066 CAAAACTTAAGGACCGAAAGGA ACATGGTTGGTTAGTGGCCT na na SSR06791 TTTGTAGTTTGAGAACTCAAGTTGG TGGTGTTTGGTTGTCCTGAG na na SSR10783 TGGGAAAATGGGAGTTTCAA CGAACCACCAGTATTGGACC na na SSR07209 CTGTCTGCAGAGCCATCTGA CCATCAAGTTGAGGAGCAAA na na SSR23549 TCACCCCCACTTTACTCCTC AGTCAATCAGTCAGCGCCTT na na UW084401 CTTCATTCCCCCTTCCAAAT CGTCCATACATTGGGATCTTC na na SSR14026 TACCGGAGAAATCATCGAGC TCGCTAAACTCCAACACGAA na na UW018193 CATGCGATTCAATTGTGAAAA TGCAATTTGTCTCTTACACCTG na na UW084415 TTCATTGAGTTTTACTAATGCCAAA GTCGTCGAAGCATTTTGTGA na na SSR00012 TCTCACCATGGTCACCTAATG GGTCATTGAAGAGTCAAGTTGG na na UW024693 TGAAAGAAAGATGGGGGAGA TTCCCCCTCAAATATTGCTG na na SSR05899 TAAGAGCAAAAATCCCACGC AGCTCAATCAACGTCAAGAGAA na na UW049135 TTATGAGGGGTCAGGTTGGA AAAAGGGGAAGGGAATTGTG na na SSR22706 CATAAGCCTTTCAAGCTGGG CTGAGGTCTCCTGATGGAGG na na UW058682 GGTGATGAGTTGGTTTTGTTCTT GCCAAAATCGTGGCATAAGT na na UW058714 CAAGGGTTGGCCTGTTTTTA GGGGTGTGTGTGTGTGAGAG na na UW083447 TGCTTGTGAAAGTCCTCGTG CTTTTGCTTTGCATCCCAGT na na SSR06225 TGTATCATTCCAATCCCTCCA CGAAGTCCAAATTGATAAAGGC na na SSR17389 AAGGACAAAGACAACATTAACAAAAA GGGTTCTACGAAGGAGAGCA na na SSR11043 AGGTACGAAACAACGGCAAT TCGCACTCACTCTTTACCGA na na SSR13456 ATGTGGGTGTGGAAAAATGG TAAAGGGGCAATTTGGTGAA na na UW084381 TGACACGCTACCTTGAATTCTG AGGAACTGGAACTGCATGGT na na SSR05415 GGGCATCATGACTAAATTCTCC GTCTTCCTGGGTTAGTGGGG na na SSR03481 TGTCTGTCCTTTTCCCTCCTT AGAAACATGGTATGATATGTTGGA na na UW084598 TACCTCCATGCTCCATCACA TGGTGAAGTTAAAGGGTAAATCG na na UW084449 TTTGTTTGTCGACCCAAAATAG TCCTTTATACTTGAAACCAAAAAGAAC na na SSR00276 CCAATTAATTATCCTCCCACGA AATTAAAGTGAGGAGTGGAATTTTT na na SSR03820 AGAGGGCAAATTGGTGAATG TCCATCCTGTATGATTTGAGTTG na na UW084372 GGCTCCATATGCCAAATGAC TGGTGAAAACTCCATGGTTG na na SSR05515 TCATTTTGGCTGCAATTCAA GATTCTCCATCTCCACGCAT na na 11 ŞIĞVA et al. / Turk J Bot UW084851 CCCAAATTACCTCATCAATTTTT TTTTTGAAGGATTTTGGGTATG na na SSR18549 GACACATCGCATTTTCCAGA ATTAGGGGCTCCACAAAACA na na UW084559 GGGGGAGATTGATAGTTGGAC CGCCTGTTCTTTCAACCATT na na UW084196 TATCACCGCTTTGGATTATT CCCTTCCTCCTCATACTTTT na na UW084295 GAGCAAGAACAGGAACAATC ATAGATATGTGGGTGTGGGA na na UW084212 GACAACTGATAACCCATGCT TAATCATCCCCAACAATACC na na UW084519 GGTAAGAGATGATCTTCGAAAGG TTCCATTCATATTCTTCCAATGC na na UW084691 GTTGTCGTCGAGGTCCCTAT CTTTGCATGTAACGCCAAGT na na SSR20165 CAATGGAGGAGGAGTTGGAG GGGGCAGGGTAGAAGAAATC na na UW084351 GAAACACAAAGTTAAAACAAAAATCC GACATCACGACGTGGAACC na na SSR07711 CCCAGGCATTTTCAAACACT ATGGTTGGTCCATCTTGCAC na na UW084461 GGCTACAGGGACATAAATACACTT CGTTGTAATTACTTGGCCATCA na na UW084654 GAAAACAGATTGATTGGTATCATTG CAAAGCAAGAAGTTTGGAGGT na na UW084852 TCCACTAAATTTAACTTGGTATCAAAA CACTTGTGTGCAAGAAAATATTGAA na na SSR10725 TGACCATCGGTGATAGAATTT CAAACCAACTCAACCTTGATAGAA na na SSR15321 TCAATGTAGGTAGAGCACCACG TCCAATTGCTTGACCAATGA na na UW083711 AGCCTTGGTGAAAAGGAAAT GCCTACAATGACACACCAACC na na UW002466 TGGAACCCAGAATCTAGCCTT GCCTACAATGACACACCAACC na na UW084357 AAAACAAAACATAGTAATTAAGCCTTC TGAAATCTCTAGAAACAGGCGACA na na SSR03529 TGAATTGAATAGACACAACAATATGC ACATGTTGGGACTCCATGTG na na SSR00772 AGAAGCGTTGGGGGAAAATA TGCTACCTCACATGGTTTTG na na SSR07100 CACACCATTTACGGTTATGGG CATTTGGTTCAGAAAGGGGA na na SSR14180 TGGCAACATTGTGAATTGTG GAAGGGAGTACTGAGTTGCGA na na UW084533 TTCCCTCTATCAACAATGTCCA TTTCCTTCTAAAAATTGAACTATCACA na na SSR10911 CAGTACCAAGTCCCTTCCCA TGGGATCCTAACAACTCCATTT na na SSR06303 AGCTCTCAACAACGAAGGGA TGACTTTCTTGATGGTACCGC na na SSR15196 CAAACTTTGTTCAAAATCTCACCA AAAAGCAAACCTAGGGAGCA na na UW084823 GGAAAGTGAAGAAGTAGGGTTTCA GGGTTTCCGCTGTTTCTTC na na SSR03514 TAGGGTCCCCTTCCCTCATA GGGTACCCAAAAGCAAGTGA na na SSR03943 TTTTTGGTGAAAAGGAACGTG CACAAAGCAAAATTGAGGGAA na na SSR10224 AAGTGAGTTGCAATGGCTGA TCCATTGAGGTGATCTGAAAAA na na SSR19343 ACCACGTGTATCTTCGCCTC TCAAATGCATTGAAGGCTGT na na UW084824 AAGATCACTGCCTCAATCTCGTAT CTCACGTGCCGAGATTAAGAA na na UW084820 AACCCTATGATTTAATTGGTTTTTC ACAAAACGCCAAAGTGGTTC na na SSR16163 CCAATATTTGCATATGGTTTATCA CAATCTTTGCATTTTGCTTTTG na na SSR11858 CCCTTCTCTCTCCTTCAATCC GTTTGCATGGTGAAATGTGG na na SSR11219 GCCATTCAAGGTGTAAGACCA ATGTTGGTTGGGTTGGGTTA na na SSR11343 GTGGGGTTGCTTTTGGATAA CAATGGTTGCTTTGCTTCAA na na SSR02764 CCAAGAACCACAAAAGTGGC GTGAGGACGGAGATGAGAGC na na SSR00019 ATTCTCGTGAACCATCACCC ACTTTTGCCACTTGGCACTT na na SSR14290 TGAAACAAAATTCGAGGTGTGA TCACCACATTCTTTTTGGCA na na SSR03940 GATTCTCCGGAAACGGATTT GTCGTTTTCCGCGATTCTAC na na SSR21318 GACACCCCATTCCTCATCAT GCTTCATCACTCCCAATTCAG na na SSR10954 TGCAAAACCAATTATTTGATATAGAGA TTTCGGCAAAAGAACTAGGAG na na 12 ŞIĞVA et al. / Turk J Bot SSR10829 TGTAATGCCACGTCACACCT AAGCCAAAGGGGTTTGAAAT na na SSR07248 CGATTGGAAAATATCGGCAC CGAATCGCCTTCAGTTCTTT na na SSR03768 GATGCTTGTGAAAACTGGGG TTCCGTGGTTCAGTACCTTT na na SSR13996 CAAATCTTAACCTTCTTTGCATCA TTGAATCCAACTCAAACTCATTG na na SSR18564 CCAACGTTCCATATCCACCT AGTAGCCGACATGCATCAAA na na UW084569 GATACAACCGCCGAGATCC TGTATTCCAATGCACTGTTGG na na UW039897 CCCAGTTCGTGACTTTTCGT CCCAATTCTGTTTTCCTAATTGA na na UW084428 GCCATGTTCACATGACCAAA CCCATGGATTCTTGGATCTG na na SSR00126 TCCACTCTTGACCAATTTTGAG CACAAGAGGAAGCTATCGCA na na SSR04252 AAAGAACACACATGGTGGTGG AAGGAGTGTTTGAATAGGCCG na na SSR11985 GCTGCATTTCATTTAACGCTT TGGTCCATCCTCACCAATTT na na SSR16005 CTCCACGAACCTTCCTTCAC ATTGTTGGGCTTGGTTCAAT na na SSR21885 AAGATTCAGGAGGAGGGGAA AGTTCCACAAGGCACAGGTC na na SSR19165 AATCCACGTTGGTTGTCGTT GAAGGGCCAAAAATGTTTCA na na SSR13741 TTTCGCCCATGAAATTCTTC CAAAGAGGTTCACGTGGGTT na na SSR10466 TGTTGTGAGCGGTTGTGATT CTGATGCTCACACGTGTCCT na na SSR21936 TTGGTTGGAAAAAGGAAGGTT GGGCAGAGGCTTTTTCAATA na na SSR01148 CGGAGAAAGGCTCAGAAACA TGCACGCACATAAACTAGGG na na SSR21561 TTGGAATCAAACAAAGAAAGAAA GGCAAATTTTGGGTAGACGA na na SSR00193 GCCAATCCAATGGAACAAGT TTGTAAACCAAAACCTTACCCC na na SSR19755 TATCAGCGAGGGAAGGAAGA TAATTGCTGCATCGAAGACG na na SSR19291 ATGGGAAGAAAAGTGGGACC AGATTTCCTCCCCAATTTCG na na UW084828 TGAAATGACCCTAAAATTAAGCA TGTGTGTCTCCCAGTAGTGTTTG na na SSR14861 ATTTCTTCCCCCACCAAAAC ATGAATCCTCCTCCCAGAGC na na SSR18771 GCACGTGGGTCAAAGAATTT GTTGGTCAGCAAAAACGACA na na UW084615 AAGGATTACATAAACCCTACCATGA AAGCAAAAATTGGCTGCTTTA na na SSR18133 CGATTTCAAACAAATTGCTAACTG GGAGAGTCAAATCAAACATCCC na na UW084364 CGGACGTTTTAGAGATTTTGC AAGTACTCCATGAGGGGGAAA na na SSR05271 GGTACAATAGGGAGGCCCAT AGTGGGGGATGTAATGAAGG na na UW085071 GGACTGAAATGCTATTTTCCA CAAGTGTTGTGTGATTATGAAGC na na SSR05682 TGAAGGTTTTTCTCCAGCGT ATTCGCTCACTTCCGAAAAG na na SSR20063 CCCACATTGGTCTCAACAAG GCAGTTATATTTTGAGGGGAGA na na SSR17062 AGCTAGCCACGTAACACCGT CACTCTCAAAATTTAGCCACACA na na UWSTS0125 TTGGCTAATTTATGGTTGGTATG TCAAACTTCCTACCTCAACATTCA na na UW084662 CACGGCTCTTATCGGTTAGT CACTAGGTCGTTCAAAGCAA na na 51-6CAPS CACACTCCTAAATTACGAAGTTGAAA AGATTTTCAGCCTTCATTCCA na na UW062953 ACCAAATCGCTTCTGAGGTT GGCATGAAAGAAACACCGTT na na 51-14CAPS CGTGAACTCAACAAATAAAAAGACG AAACTGGGCAGCTAGAAAACA na na UW084680 TGAGGCTTGATGGTTGTGTT CTTTATGCTGGATGATCCCC na na UW084975 CAATCCTCGTTCATCGACAC GCCAACATCCACTTGTCAAC na na CKX-indel GAAACGGTTCCAGGTAAGCA TCCCATTTCTTTATTTACTTCAGC na na UW084979 CCTCACTGCCATTCTCTTCA CATTGGCCATTGTGAAAAAG na na UW084686 AAACACCTTCTTGGTCCTACG GGACCCCTACCTAATGCTCA na na UW084870 TTAATTTGGATTCGGCCTTC AAAATGGGGTGAGTGAGGAG na na 13 ŞIĞVA et al. / Turk J Bot UW084875 CAAAACTCCCAAGGGAAAAA CATTCTTCTCGTCCCTCCAT na na SSR18551 GATGTGCATGTGATCCAACAG TGAATCTACTTGGGTTCGTTGTT na na UW084189 GAATCATGGAAGATTGGAGA TTTGGAAACACACAGATTCA na na UW084033 GATATTTTTCCAACCTTCCC TGTGTGATTTTCATTGCTGT na na UW084716 GATCCATTCCCCTTTCTTCA GAAAAGCATAGGACACGTCG na na EC11 TCTTCGCAGTCACCATTTC CCTTCCTCTGTTTCTGTTCC na na EC12 TATTCTTCTTTGCTACCCAT TAAGTTTATTTTCTGCTGTCTA na na EC13 GCAATGAATCATGACCTCCA CTGAGAATTGGGAAGGGACA na na EC15 ACCAAAAACAGACCCCTATG GAAAGGGAAAACAAACGAGG na na EC18 TGCCATTTCATCGACTCTTC GCATTTCTGCTGTGGCTTAG na na EC19 TTTCTCTCCAACTCACCCTG TACATCGGCTTTGCTCATCT na na EC20 AAAGTTGCTCTTGTTTGTCC GAGGTGAATGGTGGTGGCT na na EC22 CAGCAGAGAAACTCAATCCA CTGTTTACGGCTGCATTGGT na na EC24 ACAACACAACCGCTTCTCGT TGAGCCCAAGCACATAACAG na na EC27 GTTGGAAGGCACACAAAGTC CGAGATGATTGGAGGATGATG na na EC28 CTGAGTTATGGGGAAAGCAA TGTTAGTGATGTTGTTGGACC na na EC31 CTAACCAGCAGAACCCAATG GTATCCTGTTTCCAGCGAGA na na EC34 GATCCCCATCATAATCACCC CAAAGGGCTACAATAACAAAC na na EC35 ATCCACAACACAAAAACCAC AAGAAGAACAGCCAAGAATG na na EC39 CCAAGTTTAAGTTATTTAGGAG GAAGAGGACGATAAAGATGA na na EC41 AGCATGTGGAGGAGAAAGCA TTCATCATCGAGTGGGTCTG na na EC47 CGATCTTTGTCATCCGACCT AGAACGAGCACGTTTTGAGC na na EC49 CGTGTTTTCTCAGATTTCCCA CACTTCCCTTATCAACCCCA na na EC50 GGAACAGGGAAATCCACCAT TCGCTTCATCTCCCTCCTCC na na EC52 TCAAACACGAACCCGAAACG CAAGAAATTGCCAGGACGAG na na EC56 TTTTTGGGGGTTTTTGAGAG AGCTTTGTTCCCTATCTTCC na na AB032936_2 TCTCAACCATTCCTAAGACGG GTTGTGAGTTATGAGGAGATTG na na CM1.15 ATTTCTTTTTCCTAATATTTAAC GAGAACTAATTCGTATGGTTTA na na CM1.41 TTCATTTCAGATCTGGCTCTCTG AACAGCCTGAAAGTGAACCT na na CM2.20 GATGATGGTTGAAGTTGGAGA TCATCACCAAAATGTTCATTAAGC na na EAACMCA 391-395STS GAATTCAACCAAAAACCATAATCA ATATCAGGTCAAATCTATAATCCC na na EAAGMCAG 154STS GAATTCAAGGGCAGTGGTGCAAC TTAACAGAGTCTCCTCACCCTGATTT na na EAAGMCA 280-282STS AACACTCCTGCTTTAACAGCATC AATGTAATCGTCATTCAGCAGTGT na na EAAGMCTG 171-179STS GAATTCAAGGTTATTTTCTCATCA TTAACTGGCAAGCGTTCTTCTAAG na na L18-2H19A CCATCATAGTCAAATAAGAAATGA GGTAGATATGTGTGCGCTATTTTG na na MC224 GCTTGCTACTTAACGTTTG GACATGCATAATGTGAGAAG na na N6-1RTRANS TCTATGATTTTCAACAATTGGAAG GGTTTTCTTAAATAGAAGAACACC na na CM01 TTGGAGGAGACAAAGGCATC TGCTTCAACCTCTTCTTCTGG na na CM04 CATGGCGATGTTTTCTTTCA AAGGGAAAATTTTGGAAGTGG na na CM05 TCCAACGAAATCCCACTGTT AGCCGTTCTTCCGGATAGTT na na CM07 TTTCCCGCATTGATTTTCTC GAGAAACGCTTCCCACAAAC na na CM09 GTCAAAAGCATCAGCAGCAA CAAGTTAGGCAAACCCCAAA na na 14 ŞIĞVA et al. / Turk J Bot CM15 ACCATCCTCCCTTCCAAATC CAGAGAAGCAAGTGCAGCAG na na CM16 TGCCTGTTGTGATTGAGGAG TTCTTCTTACCTCCGCCAAA na na CM17 CCTTCATCATCATCATCGTCA GACCGGCAGTGGACATAGTT na na CM21 CGGGGAATTTGTGCTCTATG CCCAAACAAAGCCAAAAGAA na na CM22 AAGGATTTGGTGGTGCTGAC TTTCCATCTTGGGCTCCAAAC na na CM23 TTCTTCATTTAGGGGCACTG AAAGGGGGCTCAACATTTTT na na CM26 CCCTCGAGAAACCAGCAGTA CACCTCCGTTTTTCATCACC na na CM28 GCCGCTGTAACGAATAATGG GAAGAAAACAGGGCATCCAA na na CM30 TCAAACCTAAACCCTAAACCTAACC AGGATGATCGGGGAAGAAAT na na CM33 TTGGCTTTTGGCTAATCTCC TGAAGGGGTAAAAAGGTTAAAAA na na CM38 TAGCATCTGATCGGAAAACC CAACCTCATCCGCCAAGAAT na na CM39 GATTTCCCCTCCGAACTCTC TTGCCCTAAAACCCTCACAC na na CM43 CTCTTCCAATCACCGCCTCT AAGGAGGAGCATGAGGGAAT na na CM46 GCTCCGGCAAACCTTTTTAT GTGGACACGGTGATCACAAA na na CM49 CCCCATCAGAAAGATGATGAA TCTTTGTTTCTTCAATGGGGTA na na CM53 CTGCCGTGAAGGAGAAGAAC AGCCTCAATCCCCAATCTCT na na CM55 CCTCTCTCTTTCCCCACCTC GAAACAGAAGGAGCCACAGC na na CMAGN33 CTGTCTGCTATTCTCCACTTGG TGTATGCCACGTAGCGAAAC na na CMAGN45 CCCACAAGAGAGAGAGAGAG GTGTGACAGGTAGATTGTTGG na na CMAGN52 CCACCAACATAACACACAAC CTCTCACACTGTTGGGAAGA na na CMAGN61 GGAGACACAAGGAATATGTG ATAACAAAGGGGCATAACAC na na CMAGN68 GGAAGGAAATTAGCATGCAC GCCACTCTGTCTTTCTTCC na na CMAGN73 ATCCAACTCGACCAAGAAAC CAGCTCTACAACAACATCTC na na CMAGN75 TGGGTTTTCTTCTACTACTG TGCTTTTACTCTCATTCAAC na na CMAGN79 CTTCACTAAAACTACAAGAG TTCCAACTTATTCATCCCAC na na CMAT141 AAGCACACCACCACCCGTAA GTGAATGGTATGTTATCCTTG na na CMAT35 GTGGGTCATCATTATTGTTA GCTTTTAGCCTATTAAGTTGC na na CMATN101 GCTTGTCTTTGTGTTTGC GAGAACAAGACTCCTTAATCC na na CMATN22 CGGCAATCATCTTATCTTTC AAGATTGAAGTGGGAAAATG na na CMATN89 CACTACCTTAAAACAGAATTG GGACAATTTAGGGAGGATC na na CMBR1 AGATGACCAAACCAAACCCA CAACGTTATGGGGATGAAGG na na CMBR10 CCGTTTGGATTCAGGCTAGA ACCGGTTATCAAGGGTCCAT na na 15 16 X X X E-GT E-GC E-CA X E-GG X E-AA X X E-AT E-AC X E-CT X X E-CC E-TC X E-TG X X E-TA E-TT E-AAG X E-ACC X E-AG X E-ACC X X X E-AAG E-CA X E-AAC X X E-ACA M-CG E-CG M-CAC X X X X X X X X X X X X X X X X X X X X M-CAA X X X X X X X X X X X X X X X X X X X X M-CCA X X X X X X X X X X X X X X X X X X X X M-CAT X X M-CG X X X X X X X X X X X X X X X X X X X X M-CGT X X X X X X X X X X X X X X X X X X X X M-CGA X X X X M-CT X X X X X X X X X X X X X X X X X X X X M-CTG X X X X X X X X X X X X X X X X X X M-CTT X X X X X X X X X X X X X X X X X X M-CGC X X X X X X X X X X X X X X X X X X X X M-CGG X X X X X X X X X X X X X X X X M-CTA Supplementary Table 3. AFLP primer combinations used for AFLP screening of parental lines and F1, BR, and BS groups. X X X X X X X X X X X X X X X X X X X X M-CCT X X X X M-CC X X X X X X X X X X X X X X X X X X X X M-CCG X X X X X X X X X X X X X X X X X X X X M-CTC X X X X M-CA X X X X X X X X X X X X X X X X X X X X M-CAG ŞIĞVA et al. / Turk J Bot