Difuzyon2.82 MB

advertisement
KONU BAŞLIKLARI
Molekül Hareketleri,
Hücrenin Fiziksel Yapısı,
Hücre zarının özellikleri ve görevleri
Hücrede Zarında TaĢınma,
(ilke ve çeĢitleri)
Biyolojik sistemlerde süreçler, enzimlerin kontrolleri altında
oluĢurlar. Bu süreçteki kimyasal reaksiyonlar ve reaksiyonların
hızı ise FĠZĠKSEL ETMENLERLE sınırlıdır.
En önemli fiziksel sınırlamalardan biri ise, reaksiyona girecek
maddelerin reaksiyon bölgesine belirli hızlarla taĢınmasıdır.
Tüm
organizmalarda,
temel fonksiyonel
birim HÜCRE’dir
Hücre
Canlının, tüm canlılık işlevlerini yürütebilen temel birimine
hücre denir.
Hücre iç bileşiminin sabit kalması için, membrandan net
ileti belli bir hızda devam etmelidir.
Küçük Moleküller(Mikromoleküller), elektronlar,
fotonlar, protonlar, iyonlar ve su
Orta büyüklükteki moleküller amino asitler ve şekerler,
Makromoleküller proteinler ve DNA
Zardan geçen maddelerin çoğu seçime tabi tutulurlar.
Canlı sistemlerde, moleküler iletim ve moleküler dağılımda
etkili olan birçok fiziksel süreç vardır.
Hücrelerde moleküler harekete;
•Elektriksel itme ve çekmeler,
•Van der Walls kuvvetleri,
•Membranın mekaniksel kuvvetleri etki eder.
Membranda madde iletiminin hangi mekanizmalarla
olduğunu anlayabilmek için kısaca hücre yapısı ve ilgili
fiziksel süreçleri inceleyeceğiz.
Hücre içi ve hücre dışı sıvılar arasındaki madde
alışverişi, özel bir yapıya sahip olan hücre zarı
(membran) aracılığı ile olur.
Hücre zarı ya da plazma zarı hücrenin
organellerini ve sıvı içeriğini saran ve hücreye
yapısal bütünlük sağlayan ayrıca çok önemli
işlevleri yürüten seçici geçirgen bir yapıdır.
Yapısı: Hücre zarı baslıca protein ve
fosfolipitlerden oluĢmuĢ çift katlı bir sıvıdır.
Fosfolipit tabaka membranın sıvı bölümünü
oluĢtururken, fosfolipitten oluĢmuĢ bu sıvı
tabaka içine gömülü halde bulunan proteinler
ise mozaik bölümünü oluĢtururlar.
Hücre Zarı
Polar (Kutuplu) Maddeler
Polar Olmayan (Kutupsuz) Maddeler
= Hidrofilik
= Hidrofobik
Fosfolipid
+
=
Fosfat
Baş Bölgesi
Polar
Hidrofilik
Lipid
Kuyruk Bölgesi
Non-Polar
Hidrofobik
Fosfolipid Topluluğu Sulu Ortamda ;
-Misel
-Bilayer = Double Layer
Bir madde;
Ya akıcı, hareketli, kararsız,
Ya da düzenli, kristalize, yüksek organizasyonlu
Hücre membranının bilayer tabakası
: Ġkisi de.
Singer ve Nicholson’un akışkan mozayik modeli (1972)
Bilayer tabaka üzerindeki mozayikler = Proteinler
Hücre Zarındaki Proteinler:
-İçsel
=
-Yüzeyel
=
Integral Proteinler
Periferal Proteinler
Hücre Zarının Kantitatif Özellikleri
Kalınlık
= 6 - 10 nm
Kapasitans
= 0.5 - 1.3 µF/cm2
Direnç
= 102 - 105 Ohm x cm2
Bozulma Potansiyeli
= 100 - 150 mV
Su Geçirgenliği
= (0.4 - 400) x 10-6 m/s
Yüzey Gerilimi
= 0.03 - 0.1 N/m
ÖZELLĠKLERĠ:
• Kesintisiz olarak hücreyi çevrelerler
0
•Kalınlıkları 75-100 A kadardır
• Canlı-saydam ve esnektir
0
•Üzerinde por (8 A )denilen delikler bulunur
•Seçici geçirgendir
•Zardaki proteinler enzim görevi yapar
•AkıĢkan bir yapıya sahiptir
•Elektriksel bakımdan yalıtkandır
Membranlar bir iç ve bir dıĢ yüzeye sahip asimetrik
çit tabaka Ģeklinde yapılardır.
Bu tabaka Ģeklinde yapılar termodinamik olarak
kararlı, metabolik olarak aktifler. Ve aralarında nonkovalent bağlar vardır.
Membranların yapısı, organizmalar arası, hücreler
arası ve farklı organeller arası farklılıklar gösterir.
Farklı fonksiyon- farklı yapı
Yapıda değiĢim- fonksiyonda değiĢim
Plazma membranının fonksiyonları
•Bariyer
•Selektif permeabilite
•Reseptörler ve sinyal iletimi
•Endositoz, eksisitoz
•Tanıma ve hücreler arası iletiĢim
•Hücrenin Ģekil ve hareketi
► Hücre zarının en önemli özelliklerinden birisi seçici
geçirgenlik özelligine sahip olmasıdır.
• Bu;
► homeostazis için ve
► hücrelerin uyarılması için gereklidir.
Membranlar
Morfolojik yapılarına,
Geçirgenlik derecelerine,
Geçirgenlik derecelerini değiĢtirme yeteneklerine
göre sınıflandırılırlar.
Geçirgenlik derecelerine göre-1
Semipermeabl membran (yarı geçirgen zar):
Bunlar sadece su molekülleri gibi küçük moleküllerin
geçişine izin verirler relatif katı maddeleri - kristalloid,
kolloid gibi- geçirmezler..
Geçirgenlik derecelerine göre-2
Ultrafiltre ve diyalizan zarlar:
Su ve tüm kristalloidlerin geçmesine izin verip kolloitlerin
geçmesini kısıtlayan zarlardır.
Geçirgenlik derecelerine göre-3
Selective permeabl (seçici geçirgen ) membranlar:
Bir çözeltideki farklı özellikler taşıyan parçacıklardan bir
kısmını geçirip diğer bir kısmının geçmesine imkan
vermeyen zarlardır. Kolloidlerin hiçbirini geçirmeyip
kristalloidler için de seçici davranır. Örn. canlı
organizmadaki hücre zarları.
Uyarılabilen membranlar (sinir, kas hücresi membranları..)
Uygun bir uyaranla membranın geçirgenliği değiĢtirilebilir
(elektriksel uyaran, mekanik uyaran, transmitter olabilir).
Membrandan geçen madde miktarı ve geçiĢ hızı
kontrol edilebilir.
Bir membrandan maddenin geçme hızını belirleyen 2 etmen
vardır.
1- Hareketi oluĢturan kuvvetlerin Ģiddeti
(konsantrasyon gradyienti, elektriksel gradiyent, basınç
gradiyenti)
2-Zarın geçirgenliği
Membran Transport sistemleri
1- TaĢınacak bileĢiğin özelliğine göre sınıflandırma
2- TaĢıyıcı proteinin varlığına göre sınıflandırma
1- Taşınacak bileşiğin özelliklerine göre sınıflandırma
Küçük moleküllerin geçişi
Pasif Transport
Basit difüzyon
Kolaylaştırılmış Difüzyon
Aktif transport
Büyük moleküllerin geçişi
Endositoz
Eksositoz
2-Taşıyıcı Protein Varlığına Göre
a- Aracısız transport
Basit difüzyon
b-Aracılı transport
Kolaylaştırılmış Difüzyon
Aktif transport
HÜCRE ZARINDAN
MADDE TAġINMASI
Canlılığın devam etmesi için bütün canlılar dışardan bazı
maddeleri alıp, bazı artıkları dışarı atmak zorundadır.
Madde geçişleri hücre zarında olur.
 Porlardan küçük maddeler (Difüzyon, Osmoz ve Aktif
taşıma)
Glikoz, fruktoz ve galaktoz.
Amino asit,Yağ asitleri ve gliserol,Vitamin.
Mineral, tuz ve sudur.
 Porlardan büyük maddeler (Ekzositoz ve Endositoz)
Maltoz, sakkaroz ve laktoz
Yağ, Protein.
Nişasta, glikojen, selüloz ve kitindir.
Molekül Hareketleri
Maddelerin katı, sıvı, gaz olma durumlarına göre
molekülleri hareketsiz, az hareketli veya çok
hareketlidirler.
Brown hareketi,
Sıvılarda ya da gazlarda bulunan çok küçük
taneciklerin yaptıkları sürekli ve düzensiz
hareketleri açıklar. Adı bulucusu Robert Brown'ın
(1773-1858)
adından
kaynaklanan
Brown
hareketi, her parçacığa sıvı ya da gaz
moleküllerinin çarpmasının sonucudur; çok küçük
tanecikler içeren bir sıvı damlasının mikroskopta
incelenmesi sırasında kolayca gözlenebilir ve sıvı
ya da gaz moleküllerinin sürekli ve rastgele
hareket halinde olduklarını ortaya koyar.
BROWN HAREKETĠ
Özellikle sıvılarda ve sıvılarda çözünen katı
moleküllerin hareketi bu tarzda olmakta, böylece
moleküler difüzyon gerçekleĢebilmektedir.
DĠFÜZYON
Gaz veya sıvı moleküllerinin sahip oldukları kinetik
enerji yardımıyla rastgele yer değiĢtirmesidir.
A- gazlar ve gazların difüzyonu,
B- Sıvılar ve sıvıların difüzyonu,
C- Katılar ve katıların difüzyonu
A- Gazlar ve gazların difüzyonu
Belirli şekil ve hacimleri yoktur,
Moleküller birbirinden uzaktır. Bu nedenle çekim güçleri
zayıftır.
Sahip oldukları kinetik enerji nedeniyle molekülleri
devamlı hareket halindedir.
Bu hareket ısıyla artar ve bulundukları ortamın her
tarafına dağılırlar.
B- Sıvılar ve sıvıların difüzyonu
Hareketleri yavaĢ, çekim güçleri fazladır.
Birbirlerini çektiklerinden bulundukları
ortamın Ģeklini alırlar. Difüzyonları da
moleküllerin kinetik enerjiye sahip
olmasından dolayıdır.
Katılar ve katıların difüzyonu
Moleküller
arası
çekim
kuvveti
fazla
olduğundan bu kuvvet moleküllerin yer değiĢtirmesine
engel olur. Bu yüzden hareketsizdirler ve Ģekilleri sabittir.
Molekülleri titreĢim halindedir.
Katı maddelerde serbest molekül hareketi değil de ancak
titreĢim hareketi olduğundan, difüzyonları için bir çözücü
tarafından eritilmeleri gerekir.
Solüt- katı madde,
Solvent- çözücüye,
Solüsyon-Çözünme sonucu oluĢan karıĢıma denir.
Hücrede en iyi solvent sudur.
Solüsyon ve Solüsyon tipleri
Ġki ayrı yapının birbiri içinde eriyerek oluĢturduğu
karıĢım solüsyondur.
A- hakiki gerçek solüsyon
Suda dağılan partiküller < 1 mµ
Saydam olan solüsyonların suyu uçurulursa kristal
halde kalır ve kristaloit adını da alırlar
B- Kolloid çözelti: Suda dağılan partiküllerin
büyüklükleri 1-100 mµ arasındadır. Filtre edilemezler,
kristal oluĢturmazlar, su molekülünün hareketi ile
taĢınamazlar fakat yinede ÇÖKMEZLER.????
Su içinde çözünen partiküller > 100 mµ
Kolloid çözelti
partikülleri aynı elektrik
yüküne sahip oldukları için birbirlerini iterler ,
buda partikülleri dağılmıĢ(disperse) halde tutar.
Sitoplazma
proteinleri
de
izoelektrik
noktasına göre alkali ortamda bulunduklarından
yalnızca
–
yüklü
olurlar
ve
sitoplazmanın
iskeletini oluĢtururlar.
C-Süspansiyon
Su içinde çözünen partiküller > 100 mµ
Canlı sistemlerde çözücü moleküller SUDUR.
Hücre sıvısında(protoplazma) bulunan çözünmüş tuzlar,
şekerler ve diğer maddeler hücreye belli bir yoğunluk ve
osmotik basınç kazandırırlar.
Bu sayede hücre bulunduğu ortamın yoğunluğuna göre
çevresiyle alışveriş yapabilir. Hücre, içinde bulunduğu
solüsyon tipine göre durumunu değiştirir.
Buna göre solüsyonlar;
1- İzotonik solüsyonlar,
2-Hipotonik solüsyonlar,
3- Hipertonik solüsyonlar
Difüzyon-1
Bir kaba konan sıvı veya gaz şeklindeki
maddenin molekülleri, kabın her yerine ortalama olarak
aynı konsantrasyonda dağılır.
Difüzyon-2
Bir maddenin çok olduğu yerden az olduğu yere
geçmesidir.
Difüzyon;
Çok yoğundan az yoğuna doğru olur.
Porlardan küçük maddeler geçer.
Enerji harcanmaz.
Enzimler kullanılmaz.
Denge sağlanınca durur.
Gazların geçişi difüzyonla olur.
Gaz ve sıvılarda
Herhangi bir maddenin yoğunluğunun yüksek olduğu
bir ortamdan, düşük olduğu ortama geçmesine
difüzyon denir.
Her iki ortamdaki madde yoğunluğu eşitleninceye
kadar geçiş devam eder.
Madde yoğunluğundaki fark fazla ise difüzyon çok
daha hızlı gerçekleşir.
1.av i
difüzyonun yönü
 difüzyonda hareket tek yönlü değildir

moleküller devamlı hareket halinde olduğundan,
az yoğun ortamdan çok yoğun ortama da bir
miktar madde geçişi olur
 iki yöne doğru olan difüzyon akımları
arasındaki fark net geçişi verir
difüzyonun gücü






Difüzyon akımının büyüklüğü çeşitli
faktörlere bağlı olarak değişir:
konsantrasyon farkı
sıcaklık
molekül kitlesi
yüzey alanı
ortam hali
difüzyonun hızı
 moleküller düz bir çizgide çok uzağa
gidemezler

dolayısıyla difüzyon süresi moleküllerin
difüze olacakları mesafenin karesiyle
orantılıdır
 organizmada dolaşım sistemi
mesafeleri kısaltıcı işlev görür
►Diffüzyon hızı hangi faktörlere bağlıdır ?
•
Gaz yada sıvı oluşlarına,
gazlar daha hızlıdır.
► Isı,
ısı arttıkça difüzyon artar.
► Moleküllerin büyüklüğü,
küçük daha hızlı.
► Difüzyon alanı,
alan arttıkça hız da artar.
► Membran kalınlığı
diffüzyon mesafesi, mesafe arttıkça hız
azalır.
DĠFÜZYON DĠNAMĠĞĠ
t0 = Madde yok
Konsantrasyon
Saf Madde
C (Max)
Madde Yok
C=0
Maddenin
Verileceği Yer
0 (Maddenin Verildiği Yer)
X
Uzaklık
X
DĠFÜZYON DĠNAMĠĞĠ
t1 = Ortama madde verildi
Konsantrasyon
Saf Madde
C (Max)
Madde Yok
C=0
Maddenin Verildiği
Yer
0 (Maddenin Verildiği Yer)
X
Uzaklık
X
DĠFÜZYON DĠNAMĠĞĠ
t2 = Madde difüzyonu başladı
Konsantrasyon
Saf Madde
C (Max)
Madde Yok
C=0
Maddenin
Verildiği Yer
0 (Maddenin Verildiği Yer)
X
Uzaklık
X
DĠFÜZYON DĠNAMĠĞĠ
t3 = Madde difüzyonu (devam)
Konsantrasyon
Saf Madde
C (Max)
Madde Yok
C=0
Maddenin
Verildiği Yer
0 (Maddenin Verildiği Yer)
X
Uzaklık
X
DĠFÜZYON DĠNAMĠĞĠ
t4 = Madde X noktasına ulaştı
Konsantrasyon
Saf Madde
C (Max)
Madde Yok
C=0
Maddenin
Verildiği Yer
0 (Maddenin Verildiği Yer)
X
Uzaklık
X
DĠFÜZYON DĠNAMĠĞĠ
t5 = 0 noktasındaki kons. azalıyor
Konsantrasyon
Saf Madde
C (Max)
Madde Yok
C=0
Maddenin
Verildiği Yer
0 (Maddenin Verildiği Yer)
X
Uzaklık
X
DĠFÜZYON DĠNAMĠĞĠ
t6 = 0 - X arası doğrusal dağılım
(STEADY-STATE ANI)
Konsantrasyon
Saf Madde
C (Max)
Madde Yok
C=0
Maddenin
Verildiği Yer
0 (Maddenin Verildiği Yer)
X
Uzaklık
X
DĠFÜZYON DĠNAMĠĞĠ
t7 = Doğrusal dağılım (devam)
Konsantrasyon
Saf Madde
C (Max)
Madde Yok
C=0
Maddenin
Verildiği Yer
0 (Maddenin Verildiği Yer)
X
Uzaklık
X
DĠFÜZYON DĠNAMĠĞĠ
t8 = Madde dağılımı homojen
(EQUILIBRIUM ANI)
Konsantrasyon
Saf Madde
C (Max)
Madde Yok
C=0
Maddenin
Verildiği Yer
0 (Maddenin Verildiği Yer)
X
Uzaklık
X
membranlardan difüzyon
 hücre zarında difüzyon, aynı molekülün sudaki
difüzyonundan çok daha yavaştır
 membranda difüzyonu sınırlayan esas faktör lipid çift
tabakadır
 polar ve iyonize moleküller ya hiç ya da çok az difüze
olur
 bir maddenin lipidlerde eriyebilirliğinin yüksek olması
membranlardan daha kolay geçmesini sağlar
►Oksijen akciğerlerdeki alveollerden, difüzyon ile kana
geçer. Kandan da oksijen yoğunluğunun düşük olduğu
hücrelere geçer.
► Hücre solunumu sonucunda oluşan CO2 difüzyon ile
kana geçer. Kandan yine difüzyon ile CO2alveollere
geçer soluk verme ile buradan dışarı atılır.
► Parçalanan besinlerden bazıları difüzyon ile ince
bağırsaktan emilerek kana geçer.
osmoz; suyun difüzyonu
► su, polar bir molekül olmasına rağmen hücre zarından hızla difüze
olur
► geçiş iki taraf arası osmolarite farkına göredir
► su, osmolaritesi düşük olan bölgeden yüksek osmolariteye sahip
tarafa geçer
osmotik basınç
 bir solüsyonun osmotik basıncı = “saf su ile yanyana
konduğunda, su difüzyonunu önleyebilmek için
uygulanması gereken basınç”
 osmotik basıncı arttıkça osmolarite de artar, su
konsantrasyonu düşer
izotonik solüsyon = membrandan geçebilen mevcut madde konsantrasyonuna
bakılmaksızın, 300 mOsm/l geçemeyen madde içeren solüsyon
hipertonik
solüsyon
=
Membrandan
geçebilen
mevcut
madde
konsantrasyonuna bakılmaksızın, 300 mOsm/l’den fazla geçemeyen madde
içeren solüsyon
hipotonik
solüsyon
=
membrandan
geçebilen
mevcut
madde
konsantrasyonuna bakılmaksızın, 300 mOsm/l’den daha az geçemeyen
madde içeren solüsyon
Hücrenin çevresi ile seçimli madde alışverişi yapması, gereksinim duyulan
maddelerin kolaylıkla içeriye alınması, reaksiyonlar sonucu artık ürünlerin
dışarıya atılması hücre zarları aracılığı ile gerçekleşir. Biyoelektrik olaylarda
hücre zarlarının bir fonksiyonudur.
Hücre düzeyinde en önemli tanecik taşınımı konsantrasyon gradiyentle
rinden kaynaklanır yani difüzyonla sağlanır.
DİFÜZYON
Fick I. Yasası
Maddenin moleküler kinetik teorisine göre, mutlak sıcaklığı T olan bir
Ortam içindeki m kütleli moleküllerin ortalama kinetik enerjileri,
k= 1,38x10-23 J/mol (Boltzman sabiti) olmak üzere,
Öte yandan , çözelti çok büyük olmayan bir v hızıyla hareket eden bir
Molekül, hızı ile orantılı ve zıt yönlü
F=-fv
sürtünme kuvveti etkisinde kalır
f:sürtünme katsayısı, taneciğin iriliğine, biçimine, ortamın viskosluğuna
bağlıdır.
F= -6πηav ―› Stokes yasası
f=6πηa
η: viskosluk katsayısı
a: yarıçap
Fick yasası ile maddenin kinetik teorisi sonuçlarının karşılaştırıl
masından, D ile f arasında
D= kT/f yazılabilir
Difüzyon olayının temelinde moleküllerin gelişigüzel hareketleri
yatmaktadır. Bir molekül için gelişigüzel haraket sonrasında ortalama
yer değiştirme
x2= 2 kT/f .t = 2Dt
x2+y2= 4Dt
x2+y2+z2= 6Dt
ZARLARDA DİFÜZYON VE OZMOZ
Eğer zar kalınlığı x2-x1=δ kalınlığına sahip ise; o halde 1. Fick yasası
Mdif=-D dc/dx ≈-D c2-c1/x2-x1=-P(c2-c1)
Mdif=P(c1-c2)
P: permeabilite (geçirgenlik)
Örneğin; PK ≈10-8 m/s
PNa ≈10-10 m/s
Osmotik Basınç: Yarı geçirgen bir zardan derişik çözelti tarafına su
geçişini engellemek için çözeltiye uygulanması gerekli basınca çözeltinin osmotik basıncı denir.
П=icRT
T: mutlak sıcaklık
R: 8,3145 J/K .mol genel gaz sbt
i: çözünenin bir molekülünün
çözeltiye verdiği tanecik sayısı
TRANSPORT ĠLE ĠLGĠLĠ YASALAR
1. Fick Yasası
Difüzyon akı yoğunluğu, konsantrasyon gradienti ile doğru orantılıdır.
J = -D
dc
dx
J(mol/m2s) : Difüzyon akı yoğunluğu
TRANSPORT ĠLE ĠLGĠLĠ YASALAR
2. Nernst Denge Denklemi
Bir iyonun, bir membranla ayrılmış iki hacimdeki konsantrasyonları eşit
değilse, bu konsantrasyon farkından kaynaklanan elektriksel potansiyel
farkı hesaplamayı sağlayan, yani bu konsantrasyon farkını
dengeleyecek potansiyeli hesaplamayı sağlayan denkleme Nernst
Denge Denklemi adı verilir.
RT
E=
ln
F
EClEK+
ENa+
Ci dış
Ci iç
= -90 mV
= -98 mV
= +66 mV
R = 8.3143 J K-1 mol-1
T = 37 0C = 310 0K
F = 96500 Cmol-1
RT
F
= 0.0267 Volt
TRANSPORT ĠLE ĠLGĠLĠ YASALAR
3. Gibbs-Donnan Dengesi
Nernst Denge Denkleminin özel bir durumudur. Ortamlardan
birisinde membranı kesinlikle geçemeyecek bir maddenin
bulunması halinde, iki iyon arasındaki dengenin sağlanabilmesi için
gerekli iç ve dış konsantrasyonları hesaplamak için kullanılır.
[K+]iç
[Cl-]dış
=
[K+]dış
[Cl-]iç
FİCK Kanunu : (geçiş hızı)
Difüzyon Hızı :
D.A.K. ( Cdış – Ciç )
Delta X
D : Difüzyon sabiti
A : Membran alanı
K : Partisyon katsayısı
Delta x : Membran kalınlığı
Difüzyon Hızı :
D.A.K. C dış
Membran kalınlığı
OSMOS ve OSMOTĠK BASINÇ
2. Osmoz
 Suyun difüzyonudur. Yani suyun çok
olduğu yerden (yoğunluk az) suyun az
olduğu (yoğunluk çok) yere suyun geçişidir.
Özellikleri
 Su, çok olduğu yerden az olduğu yere
geçer.
 Su porlardan küçüktür.
 Enerji harcanmaz.
 Enzimler kullanılmaz.
 Denge sağlanınca durur.
Konsantrasyon Gradienti
= ++++++
Hidrostatik Basınç Farkı
=0
Konsantrasyon Gradienti
= +++++
Hidrostatik Basınç Farkı
=+
Konsantrasyon Gradienti
= ++++
Hidrostatik Basınç Farkı
= ++
Konsantrasyon Gradienti
= +++
Hidrostatik Basınç Farkı
= +++
Farklı iki çözeltiyi ayıran yarı geçirgen bir zardan suyun geçmesine
karşın, bir takım iyon vb. maddelerin geçememesi, difüzyonun özel bir
durumudur ve OSMOS olarak adlandırılır.
Osmotik Basınç
 Hücre yoğunluğundan dolayı, hücre dışındaki
suyun hücreye girmek için dışardan zarlara
yaptığı basınçtır.
 Yoğunluk arttıkça osmotik basınç artar.
Osmozla Ġlgili Deneyler
Bir hücre kendisinden daha yoğun bir ortama konursa, su
kaybederek büzüşür. Buna, Plazmoliz denir.
Bir Hücrenin Çok Yoğun Ortama (Hipertonik) Konması
Osmotik dengenin sürekliliği
• Su hücre zarı içerisinden, solütlerin az suyun fazla olduğu
ortamdan, solütlerin yoğun suyun az olduğu ortama doğru
hareket eder - osmosis
düşük [solüt] yüksek [solüt]H O
2
H2O
büzülür
gerilir
osmotik
basınç
H2O
H2O
• Ekstraselluler [NaCl], intracelluler [solute] ortamla dengededir
•
Denge Na-K ATPase pompası tarafından devam ettirilir
Osmos
 Düşük solüt
konsantrasyonundan
yüksek solüt
konsantrasyonlu
bölgeye doğru suyun
hareketi
Osmoz ; suyun geçişini ifade eder. Bir taraftan diğer
tarafa suyun geçişidir. Sadece su için kullanılır. (ilaç ya da
ksenobiyotik için kullanılmaz)
Filtrasyon; membrandaki porlardan süzme olayıdır.
Aslında bu da difüzyon olayıdır. Glomerüler filtrasyon bir
difüzyon olayı gibi kabul edilebilir.
Burada konsantrasyondan ziyade basınçtan söz edilebilir.
Ancak albumin gibi 66 000 dalton ağırlığındaki molekülleri
filtre edemez.
Hücre zarında taşınma
İlkeleri
• Büyüklük
• Konsantrasyon
farklılıkları
• Lipid içerisinde
çözünebilme
• Elektriksel yük
Membran transportu
• Lipid çift tabakası pratik olarak suda çözünen moleküllere karşı
(hydrophilic/lipophobic) impermeabeldır.
• Hücrelerin suda çözünmüş besinlerin girişine (şekerler, amino
asitler, vs), son ürünlerin atılmasına ve iyon konsantrasyonlarının
kontrol edilmesine (H+, Na+, K+, Ca2+, vs) ihtiyaçları vardır
• Membran transport proteinleri spesifik moleküllerin giriş çıkışını
sağlarlar (örn Na+ - K+ değil, glukoz – fruktoz değil)
• Her bir tip membran hücreye veya organellere girip çıkacak
solütlerin miktarını ayarlayan karakteristik transport proteinlerini
bulundurur
protein-free
suni lipid çift
tabaka
Hücre membranı
MEMBRANDAN GEÇİŞ ŞEKİLLERİ
I.BASİT DİFÜZYON : Membranlardan geçişlerin % 90’ı
bu şekilde olur. Filtrasyon ve osmoz da buna dahildir.
Difüzyonun kuralları ;
Yüksek konsantrasyondan düşük konsantrasyona geçiştir
Enerji gerektirmez
Difüzyonun kaideleri tamamen pH partisyon teorisine
dayanır
Her iki kompartmanda konsantrasyon eşitleninceye kadar
devam eder
Kanlanma ve yüzey genişse geçiş kolay olur (Kanlanma az
olduğu için, adipoz dokuda difüzyon hemen durur, eşitlenir.)
Elektrokimyasal gradyan-1
• Çoğu hücreler zarlarında bir
sahiptirler - membran potansiyeli
voltaja
(potansiyel
farka)
• Membran potansiyeli bütün yüklü moleküllerin (iyonlar) zardaki
hareketlerini etkiler
• Plazma zarının sitoplazmik tarafı, dış tarafına nazaran genellikle
negatif potansiyele sahiptir
• Elektrostatik kuvvet katyonları hücre içine ve anyonları hücre
dışına iter
• Böylece, eğer yüklü solütlerin membrandan
gerçekleşirse, iki kuvvet göz önüne alınmalıdır:
diffüzyonu
• (a) Transmembran konsantrasyon gradyanı (kimyasal potansiyel)
• (b) Transmembran potansiyel farkı (Membran potansiyeli)
• Net etkili kuvvet = Elektrokimyasal gradyan
Elektrokimyasal gradyan-2
out
in
Zar
potansiyeli
yok
İç tarafı negatif
zar potansiyeli
Katyon transportu
iyileştirilir
İç tarafı pozitif
zar potansiyeli
Katyon transportu
zayıflar
Basit difüzyon
• Basit difüzyon hücre membranında iki yol izlenerek
gerçekleştirilir:
– 1- Özellikle difüze olacak madde yağda eriyorsa
çift katlı lipit tabakasının
aralıklarından,
– 2- Taşıyıcı proteinlerin su dolu kanallarından.
Lipitte eriyen maddelerin difüzyonu
• Lipitte eriyen maddelerin çift katlı lipit tabakadaki hızını
belirleyen en önemli faktörlerden birisi o maddenin lipitteki
eriyebilirliğidir.
• Örneğin oksijen, karbondioksit, azot ve alkolün lipitte
çözünürlüğü yüksektir.
• Bütün bu maddeler çift katlı lipit tabakada
doğrudan çözünürler ve sudaki çözeltilerinde
olduğu gibi difüzyona uğrarlar.
• Bu nedenle özellikle oksijen hücrelere bu şekilde
kolaylıkla, sanki hücre zarı hiç yokmuş gibi
iletilir.
Moleküllerin membranı geçebilirlikleri, büyüklüklerine
ve yağda çözünürlüklerine bağlıdır
Su, molekül ve iyonlar ancak çift tabakanın hidrofobik
iç kısmından diffüze olarak geçebilirler
İyonlar, şeker ve aminoasitler gibi polar moleküller
membranı çok yavaş geçerler
!! Bunun için hücre zarında taşıyıcı proteinler yer alır
Basit diffüzyon
 Solütler, yüksek konsantrasyondan düşük konsantrasyona
kendi kinetik hareketleri ile diffüze olurlar. Yön,
konsantrasyon gradyanı tarafından belirlenir (yokuş aşağı).
 Fosfolipit tabakanın hidrofobik olan ara bölgesi pekçok
solüt ve iyonun basit düffüzyonuna engel olur.
Alkol, eter
Amino asitler, gliserol,
yağ asitleri, inorganik
tuzlar, asit ve bazların
iyonları, disakkaritler
(sakkaroz, maltoz,
laktoz)
Protein,
polisakkaritler,
fosfolipitler
Maddelerin diffüzyon
dereceleri
Hücre membranındaki difüzyon olayı basit
difüzyon ve kolaylastırılmıs difüzyon diye
iki alt gruba ayrılır.
Suyun difüzyonu
• Su molekülleri lipitte erimedigi halde protein kanallarından her iki yönde
de kolaylıkla geçerler.
• Öyleki alyuvar membranında saniyede difüzyona uğrayan suyun toplam
miktarı alyuvar hacminin yaklaşık 100 katıdır.
• Lipitte erimeyen öteki moleküller eğer yeteri kadar küçük iseler su
molekülleri gibi protein kanallarından geçebilirler.
• Molekül büyüklüğü arttıkça geçis hızı da yavaşlar.
• Protein kanalları genellikle belirli maddelere karsı seçici geçirgendirler
ve kanalların çoğu kapılarla açılıp kapanırlar.
Kolaylaştırılmış Difüzyon:
• Kolaylaştırılmış difüzyona aynı zamanda tasıyıcıaracılığı ile difüzyon da denir.
• Çünkü bir maddenin bu şekilde taşınması özel taşıyıcı
bir protein yardımı olmaksızın gerçekleşmez.
• Glikoz ve amino asitler yağda erimezler ve bu yolla
hücre içine taşınırlar.
Kolaylastırılmıs Difüzyon-I
• Örneğin amino asit taşınmasını bu yolla
açıklamak istersek, hücre içine girmesi gereken
molekül zarda bulunan özel taşıyıcı proteine
geçici olarak bağlanır ve lipitte eriyebilen yeni bir
bileşik oluşur.
• Aminoasit-tasıyıcı protein kompleksi plazma
membranını geçer ve amino asit sitoplazmaya
bırakılır. •
Gerektiğinde taşıyıcı protein diğer amino asitler
içinde taşıyıcılık görevi yürütebilir.
• Bu
olayda ATP formundaki hücre enerjisi kullanılmaz,
yalnızca tasıyıcı proteinlerin iç yapıları degisir.
• Glikoz da 45000 molekül agırlıgındaki bir tasıyıcı
protein aracılıgı ile hücre içine alınır ve insülin hormonu
glikozun kolaylaştırılmış difüzyonunu 10-20 kat
artırabilir.
Difüzyon hızı hangi faktörlere
baglıdır ?
• Gaz yada sıvı oluslarına,
– gazlar daha hızlıdır.
• Isı,
– ısı arttıkça difüzyon artar.
• Moleküllerin büyüklügü,
– küçük daha hızlı.
• Difüzyon alanı,
– alan arttıkça hız da artar.
• Membran kalınlıgı
– difüzyon mesafesi, mesafe arttıkça hız
azalır.
Ozmoz (Osmos-Geçisme)-Su geçisi
• Moleküller ve iyonlar devamlı hareket ederler, bu
moleküllerin ve iyonların birbirlerine ve bulundukları kabın
çeperine çarpmalarından osmotik basınç meydana gelir.
• Yarı geçirgen bir zarla ayrılmış bir ortamda suyun
osmotik basıncın yüksek olduğu taraftan, düşük olan
tarafa doğru bir geçme eğilimi vardır.
• Geçis çok yoğun ortamdan, az yoğun ortama doğru olur
ve suyun basıncı zarın her iki tarafında eşitlenince durur,
bu olaya ozmoz denir.
izotonik
• Canlı hücrelerin, kendi hücre içi yoğunlukları, içinde
bulundukları çözeltinin (solüsyonun) yoğunluğuna eşit
olduğu
zaman
(izotonik-isotonic)
su
molekülü
konsantrasyonu da eşittir, böylece su molekülleri hücreden
içeri ve dışarı aynı oranda hareket ederler, su moleküllerinin
net hareket sürekliliği sıfırdır.
• Vücut sıvıları izotonik sıvılardır.
Hipertonik
• Hücreler kendi yoğunluklarından, daha
yoğun bir çözelti içinde (hipertonik-hypertonic)
bulundukları zaman , su hücreden ayrılır ve hücrenin
büzülmesine, kurumasına ve belki de ölümüne yol açar.
Hipotonik
• Hücreler, kendi yoğunluklarından, daha az yogun bir çözelti
içinde bulundukları zaman (hipotonik-hypotonic) hücre bu
solüsyon üzerinde osmotik basınç yapar ve su hücre içine
doğru hareket eder.
• Hücre içine giren su onun şişmesine, büyümesine belki de
patlamasına yol açar.
Filtrasyon (Filtration)
► Bir membranın iki yüzü arasındaki hidrostatik basınç farkı
nedeniyle, basıncın yüksek olduğu taraftan az olduğu tarafa
doğru sıvı ve beraberinde erimiş küçük moleküllerin
geçisine filtrasyon (süzülme) denir.
► Vücutta filtrasyona örnek kapillerlerdeki ve böreklerdeki
taşıma olayları gösterilebilir.
► Kapillerlerdeki olay basınç farkı nedeniyle su ve suda
erimis partiküllerin damar dışına çıkısıdır (dokulararası
sıvıya geçisidir).
► Filtrasyonda proteinler gibi büyük moleküller damar
dışına geçemez.
Diffüzyonu etkileyen faktörler
Molekül ne kadar küçükse katman
arasından o kadar hızlı diffüze olur
Molekül su ile ne kadar zayıf bağlanırsa
çift katmandan o kadar hızlı diffüze olur
Lipitlerde eriyebilirliği, moleküler
büyüklüğü, yükü.
Isı, zarın yüzey alanı, kalınlığı.....
Difüzyon hızı hangi faktörlere baglıdır ?
• Gaz yada sıvı oluslarına,
– gazlar daha hızlıdır.
• Isı,
– ısı arttıkça difüzyon artar.
• Moleküllerin büyüklügü,
– küçük daha hızlı.
• Difüzyon alanı,
– alan arttıkça hız da artar.
• Membran kalınlıgı
– difüzyon mesafesi, mesafe arttıkça hız azalır.
KOLAYLAġTIRILMIġ DĠFÜZYON
Permeaz adı verilen proteinlerce gerçekleĢtirilen taĢıma
tipidir.
Herbir permeaz sadece bir iyon veya bir molekülü geçirir.
Herbir taĢıyıcı protein, taĢıyıcı solutun tutunacağı, özel bir
bölge ihtiva eder.
solüt
lipid
katmanı
Kolaylaştırılmış diffüzyon
(Çoğu doku
hücrelerinde glukoz ve amino asit taşınımı)
durum
A
durum
B
Dış taraf
Konsantrasyon
gradyanı
İç taraf
taşıyıcı
protein
solüt bağlantı
yeri
örn memeli KC hücreleri glukoz taşıyıcısı
Farklı yöne doğru transportun derecesi zardaki konsantrasyon
gradyanı ile belirlenir. Hep konsantrasyon gradyanı yönündedir
(Yokuş aşağı)
DeğiĢmeli difüzyon; TaĢıyıcı ile meydana gelir. Alınan ve
atılan molekül veya iyon miktarları birbirine
eĢittir.??????
Her taĢıyıcı bir taraftan diğer tarafa hareket ederken
yüklenmektedir demektedir. Ġyonik hareketler nötraldiryani birebir aynı tür iyon değiĢimi olur. Metabolik
zehirlerden etkilenmediğinden, metabolik enerji değil,
kinetik enerjinin kullanıldığı kabul edilmektedir.
Dizi halinde difüzyon;
Pasif ve Elektro difüzyon
Dizi halinde difüzyon; Hücre zarında 8A0 çapında
ve birbirinden belirli aralıklarla ayrılmıĢ porlar vardır.
Porlardan maddenin difüzyon süreciyle geçiĢinde,
genel fifüzyon kurallarıyla birlikte 3 etki daha rol
oynar.
1- Porun çapı, geçecek olan maddenin çapı porun
çapından küçük olmalıdır,
2-Geçmekte olan maddelerin elektrik yükü,
3- Porun geçirgenliğini değiĢtiren etkiler. Örn;Hücre
dıĢında Ca’un artması-geçirgenliğin azalmasına
Pasif ve Elektro Difüzyon;
Ġç yapısından ötürü her biyolojik hücre zarı, molekül ve
Ġyonların içlerinden geçmesine karĢın bir miktar direnç
gösterir.
Üç tip taşıyıcı
•Uniport: Tek bir molekülün taşınması
•Symport: İki farklı molekülü aynı yönde taşır
•Antiport: İki farklı molekülü farklı yönlerde
taşır
K
KolaylaĢtırılmıĢ
difüzyon
Taşıyıcı molekül vardır,
Yoğun konsantrasyondan, düşük konsantrasyona
doğrudur,
Pasif difüzyondur, enerji harcanmaz.
Kolaylaştırılmış diffüzyon
İntegral transmembran proteinleri (kanal ve
taşıyıcılar)
spesifik
moleküllerin
zarı
geçmelerine izin verirler.
Basit diffüzyonda akı konsantrasyon gradyanı
ile artarken, basitleştirilmiş olan akı bir
doygunluk değerine ulaşır
Kolaylaştırılmış Difüzyon; aktif transportun alt
kademesidir. Difüzyon gibi yüksek konsantrasyondan düşük
konsantrasyona doğru geçiş olur, taşıyıcılar vardır, ATP
gerektirmez.
Intrasellüler ve ekstrasellüler iyon konsantrasyonları
Iyon
Na+
K+
Mg2+
Ca2+
H+
Intrasellüler
5-15 mM
140 mM
0.5 mM
10-7 mM
10-7.2 M (pH 7.2)
Cl5-15 mM
sabit anyonlar yüksek
Ekstrasellüler
145 mM
5 mM
1-2 mM
1-2 mM
10-7.4 M (pH 7.4)
110 mM
0 mM
[intrasellüler] ortam [ekstraselluler] ortamdan çok farklıdır
katyonlar (+yüklü türler) anyonlarla dengelenir (- yüklü)
Özet- Pasif transport-1
• Zar etrafındaki konsantrasyon gradyanı passif
diffüzyonun yönünü ve oranını belirler.
• Moleküller yüksek konsantrasyonlu bölgeden düşük
konsantrasyonlu bölgeye hareket ederler (“yokuş aşağı”
transport)
• Basit diffüzyon: moleküller lipid çift tabakasını rahatça
geçerler
• Kolaylaştırılmış diffüzyon: taşıyıcı protein aracılı
diffüzyon (enerji gerektirmez)
Özet-Pasif transport-2
Taşınacak madde
taşıyıcı
protein
konsantrasyon
gradyanı
lipid
katmanı
kanalbasit
diffüzyon aracılı
taşıyıcı
aracılı
pasif transport
(Basitleştirilmiş
diffüzyon)
aktif transport
Küçük moleküllerin ve iyonların hücre
zarında taşınması
 Pasif taşıma
 Aktif taşıma
Büyük moleküllerin hücre
zarında taşınması

Endositoz
 Pinositoz
 Fagositoz
 Reseptör
aracılı
endositoz

Ekzositoz
Endositoz
• Lipitler ve protein gibi büyük moleküllerin ve büyük
miktarlardaki suyun hücre içine girişi endositoz yoluyla olur.
• Materyal hücre zarı ile sarılır ve hücre içine alınır.
Endositoz sekilleri
• Pinositoz,
• Reseptör aracılıklı endositoz,
• Fagositoz
Pinositoz;
• Hücrenin içmesi anlamına gelir.
• Hücre dısı sıvısı küçük damlacıklar halinde hücre içine
alınır.
• Bu sıvı içinde çözünmüs herhangi bir materyal varsa
(düşük molekül agırlıklı besinler, amino asitler, glikoz,
vitaminler ve diger maddeler gibi) sıvıyla birlikte onlarda
hücre içine alınırlar.
• Böbrek hücreleri pinositoz kullanımına örnek pekçok
hücreden birisidir.
Reseptör aracılıklı endositoz;
• Hücre dışındaki makromolekülü tanıyıp ona bağlanan özel
reseptör aracılığıyla oluşur.
• Reseptöre bağlanan madde ligand olarak isimlendirilir.
• Reseptör-ligand kompleksini ihtiva eden eden hücre zarı
bölgesi endositoza uğrar.
• Bu yolla taşımanın spesifik örnegi LDL nin (düşük molekül
ağırlıklı lipoprotein) hücre içine alınmasıdır.
• Yeni membran oluşturmak için gerekli olan kolesterolün çoğu
LDL olarak bu yolla hücre içine taşınmaktadır.
Fagositoz(Phagocytosis)
• Kelime olarak "Hücrenin Yemesi" anlamına gelir.
• Fagositozda, hücre bakteri, besin gibi katı maddeleri içine
alır (yutar) .
• Hücre zarının uzantıları maddenin ya da bakterinin etrafını
sarar ve onu gövdenin içine çeker.İ çeri giren bu madde
sitoplazmada yüzmeye baslar.
• Örneğin beyaz kan hücreleri bakterileri böyle yutarlar, sonra
lizozomlar bakterilerin etrafını saran hücre zarını eritirler ve
güçlü enzimleriyle bakterileri parçalarlar.
Egzositoz
• Endositozun tersi durumdur.
• Hücre dısına atılacak sitoplazmik veziküller
plazma membranı ile birleşir ve hücre dışına
atılırlar.
• Egzositoz ile hücre içinde sindirilemeyen partiküller
atıldığı gibi, sinir hücrelerince sentezlenen transmitterler
ve bez hücrelerince sentezlenen hormon ve benzeri
gerekli, faydalı maddeler de bu yolla hücre dışına taşınır.
Özet olarak
 Hücre zarı

Protein, fosfolipid ve karbonhidratlardan oluşur
 Hücre zarı

Koruma, bütünlük, madde giriş-çıkışını kontrol,
haberleşme ve hc. organellerinin hareket
etmesine yardımcı olur
 Hücre zarında taşınma

Büyüklük, konsantrasyon farklılıkları, lipid
içerisinde çözünebilme ve elektriksel yüke göre
taşınma sistemi belirlenir
Membranlar; çift katlı lipit tabakalarıdır ve protein +
karbonhidrattan oluĢur.
Membran, statik değildir. Hareketli bir yapıya sahiptir.
Lipitler yan hareketlidir. Karbonhidratlar lipid veya proteinlere
bağlı halde bulunurlar. Buna göre; glikolipid veya glikoprotein
olarak adlandırılırlar.
Membran modelinde sıvı mozaik modeli kabul
edilmektedir.
Lipid çözünürlüğü fazla olan maddeler membranları kolaylıkla
geçerler (suda çözünenler zor geçer).
Polarite; ne kadar polar ise suda o kadar fazla
çözünürlük özelliği vardır. Polaritesi yüksek maddelerin lipid
çözünürlüğü azdır. Membranları zor geçerler.
Glikoprotein uzantıları genelde hücre dışına bakar ve
hücrenin kimliğini oluşturur. Bu yüzden önemlidir. (örn: kan
grupları , CA hücreleri). Bir kısım glikoproteinler ise lipidde
kanallar oluştururlar (voltaj değişikliklerinde geçişe imkan veren
kanallar). İç ve dış yüzeye bakan internal ve eksternal
proteinlerin yanında, kanalları oluşturan intrinsik proteinler de
vardır.
Bir maddenin lipid çözünürlük düzeyi partisyon
katsayısı ile ölçülür. Partisyon katsayısı ne kadar büyükse, lipid
çözünürlüğü o kadar fazladır ve membranları kolaylıkla geçer.
PARTİSYON KATSAYISI :
Yağda çözünürlük
Suda çözünürlük
C (yağ)
C (su)
Partisyon Katsayısı x 100 : %’de Partisyon Katsayısı
Maddenin iyonizasyon derecesi çok önemlidir. Ne kadar
noniyonize ise, lipid çözünürlüğü o kadar fazladır ve
membranları kolaylıkla geçer. İyonize madde ise, zor geçer
(lipidde az çözünür). Bu ilişkiyi inceleyen pH partisyon teorisi
vardır. Bir madde hangi pasajda ne kadar noniyonize formda ise
en fazla oradan emilir.
Lipid çözünür Nonpolar Noniyonik Partisyon Katsayısı
yüksek ise membranları kolay geçer.
Download